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Abstract

The objective of this paper is to study a Para Kenmotsu manifold admitting theW7-curvature

tensor. We will investigate the geometry of a Para Kenmotsu manifold when it is W7-�at,

W7-semisymmetric, W7-symmetric and W7-recurrent. Also, we will establish the necessary

condition for a P-Kenmotsu manifold to be W7-irrotational.
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1 Chapter 1

1.1 Introduction

Mathematics is a natural science with a peculiar mode of operation. It is safe to say that
Geometry is an ancient creation of the Greeks. Geometry is a branch of mathematics
that deals with individual shapes, properties of space, and spatial relationships among
several objects. A geometric property independent of the geometric curve configuration
or of a surface under review as a whole but relies only on the configuration form is re-
ferred to as the local property and the corresponding geometry called local geometry. The
study of surfaces and curves is called global property and the related geometry is called
global geometry. The main branches of Geometry are projective Geometry, Euclidean Ge-
ometry, analytic Geometry, topology, non-Euclidean Geometry, and Di�erential Geometry.

Di�erential geometry is a branch of geometrical mathematics that deals with surfaces
and space curves by means of di�erential calculus. Di�erential Geometry is not a new
concept in the field of Mathematics due to its historical background. Between the 19th

and 20th centuries, di�erential geometry came about from the theory of curves, planes,
and surfaces in the Euclidean space.

The major theme of both contemporary geometrical dynamics and geometry is based
on the concept of a manifold; an abstract mathematical space locally resembling the
Euclidean geometry spaces.

Di�erential geometry’s precepts are relatively new in modern Mathematics. German
philosopher, Carl Gauss used di�erential geometry to characterize the intrinsic properties
of curves and surfaces. Carl showed that the intrinsic curvature of a cylinder is similar to
that of a plane, but di�erent from that of a sphere.

Riemann Geometry is the most advanced section of di�erential geometry of manifolds. A
Riemann space is a di�erentiable manifold on a Euclidean metric, depending on a smooth
point. Other concepts in di�erential Geometry include manifolds, fibre bundles, groups,
and groupoids. Generally, curvature di�erential geometry deals with smooth curves in
the plane and in the Euclidean Space. The rapid evolution in the 20th century has made
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Riemann geometry to be one of the most vital mathematical concepts in modern times.
The concept of di�erentiable manifold generalizes surfaces and curves in R3 that are
described in di�erential geometry. The essentials of di�erential geometry and topology
include multi-linear algebra manifolds, di�erentiation and integration of manifolds, Lie
algebras and Lie groups, homotopy, Rham co-homology, vector bundles, homology, Rie-
mann and pseudo-Riemann geometry, and degree theory. It is largely known that the
major distinction between the geometry of sub manifolds in Riemann manifolds and in
semi-Riemann manifolds is that in the case of semi-Riemann manifolds, the semi-Riemann
metric induced metric tensor field on the ambient space is not non-degenerate.

Authors defined para-contact geometrical structure on pseudo-Riemann manifold, and
some of its remarkable sub-classes such as the para-Sasaskian manifolds. Local symmetries
with respect to local geodesic geometries have been used to classify some particular classes
of Riemann manifolds; and the curvature geodesic-led local symmetries contributed to
classification of the famous local symmetric manifolds and constant curvature spaces.
The study of local symmetries leads to outstanding geometrical results founded on the
geodesic manifolds.

1.2 Definitions and Notations

De�nition 1.2.1. Given a Ck+1
manifold M, with k ≥ 1. For any subset, U of M, a vector

�eld on U is, any section, ξ of T(M) over U, that is any function.

ξ : U −→ T (M), such that πoξ = idU That is ξ (P) ∈ Tp(M) for every p ∈U . The set of all

vector �elds constitute a vector space.

De�nition 1.2.2. A 1-form vector~r de�ned at ρ is a linear scalar operator acting as a vector

space Vρ to real numbers ℜ.

This means that ,

(1)~r : Vρ −→ℜ

(2) For any (u,v) ∈Vρ and if a,b ∈ℜ⇒~r(au+bv) = a~ru+b~rv
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The set of all 1-forms defined at ρ is called a co-vector or a dual space of Vρ , and it is
denoted by V ρ∗. This is also an n-dimensional vector space.

De�nition 1.2.3. Tensors are a generalization of vectors and 1-forms (co-vectors) since any

vector u ∈Vρ can be associated with a linear scalar operator acting on 1-form u ∈Vρ to ℜ i.e.

u~r 6=~ru : V ∗ρ −→ℜ.

De�nition 1.2.4. Let c : (− ∈,∈) ⊂ ℜ→ M be a di�erentiable curve on a manifold M.

Consider all the functions C∞(p), f : M→ℜ that are di�erentiable at c(0) = p. We say that

the tangent vector to the curve c at p is the operator ċ(0) : C∞(p)→ℜ de�ned by

ċ(0)( f ) = δ ( f oc)
δ t (0).

A tangent vector to M at p is a tangent vector to some di�erentiable curve c in M such that
c(0) = p. The tangent space at p is the space of all tangent vectors at p and is denoted by
TpM

De�nition 1.2.5. Let M be a smooth manifold. Then by a Riemannian metric on this mani-

fold we mean a tensor �eld g ∈ T 2(M) that is symmetric and positive de�nite symmetric in

the sense that g(X ,Y ) = g(Y,X) positive de�nite implies that g(X ,X)> 0 If X 6= 0

A Riemannian metric therefore determines an inner product on each tangent space Tm.
A manifold together with a given Riemannian metric is called a Riemannian manifold.

The tangent space of a smooth manifold M at p is a vectorial space of dimension n, and

the operators
(

δ

δxi p

)
i∈1,...,n

is determined by coordinate chart at p and is called associated

basis to that chart or holonomic frame. We take a general basis ei that is not associated to
the previous chart.

The disjoint union of all tangent space TpM of M at all points is called the tangent bundle
and is denoted by T M =UpTp. We can define functions on TM that give a tamgent vector
for each p ∈M

De�nition 1.2.6. Consider a smooth manifold M and its tangent bundle T M. A vector

�eld X is de�ned as a map X : M → T M that assigns a tangent vector to a point p, i.e.

X(p) := Xp ∈ TpM. The vector �eld is di�erentiable if this map is di�erentiable. The set of

all vector �elds on M is denoted by χ(M)
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De�nition 1.2.7. Let M be a smooth manifold, an A�ne connection (Levi-Civita) ∇ on M is

a di�erential operator, sending smooth vector �elds ∇X and Y to a smooth vector �eld , which

then satis�es the following conditions

1. ∇X+Y Z = ∇xY +∇yZ

2. ∇x(Y +Z) = ∇xY +∇xZ

3. ∇ f xY = f ∇xY

4. ∇x( fY ) = X( f )Y + f (∇xY )

∀ vector �elds X,Y and Z, and real valued function f on M.

The vector field ∇xY is known as the covariant derivative of the vector field Y along X
with respect to ∇

De�nition 1.2.8. By S and R, where S denote Ricci Tensor and R, Riemannian curvature

tensor of an n-dimensional Riemannian manifold (M,g), then S can be de�ned as

S(X ,Y ) =

∞

∑
i=1

g(R(ei,X)Y,ei)

Where e1, e2,...en are orthonormal basis vector �elds in T M,andX ,Y,Z ∈ T M.

De�nition 1.2.9. A curve γ(s) is a geodesic if its tangent vector γ(s) at each point are

parallel.

De�nition 1.2.10. Let X and Y be topological spaces. A homeomorphism f : X → Y is a

continuous bijection whose inverse f−1 : Y → X is also continuous.

De�nition 1.2.11. Two smooth manifolds X and Y are called di�eomorphic if there exists a

homeomorphism f : X → Y such that X = f ∗Y.
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De�nition 1.2.12. Let M be an n-dimensional contact manifold with contact form η , that

is, ηΛ(dλ )n 6= 0, then, a contact manifold admits a vector �eld ξ called characteristic vector

such that η(ξ ) = 1 for any �eld X ∈ χ(M).

Furthermore, if M admits a Riemannian metric g, and a tensor field φ of type (1,1), such
that,

φ 2X = X−η(X)ξ

g(X ,ξ ) = η(X)

g(X ,φY ) = dη(X ,Y )

Then we can say that (φ ,η .ξ ,g) is a contact metric structure.

De�nition 1.2.13. We say that a contact metric manifold is sasakian if

(∇xφ)Y = g(X ,Y )ξ −η(Y )X

where,

∇xξ =−φX

R(X ,Y )ξ = η(Y )X−η(X)Y

For all vector �elds X ,Y ∈M.

De�nition 1.2.14. An n-dimensional di�erentiable manifold M is said to admit an almost

para-contact Riemannian structure (φ ,η ,ξ ,g) such that

φ 2X =−η(X)+X

φξ = 0
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η(ξ ) = 1

η(φX) = 0

g(X ,ξ ) = η(X),

g(φX ,φY ) = g(X ,Y )−η(X)η(Y ),

for all vector �elds X ,T on M.

If an almost para-contact Riemannian structure (φ ,η ,ξ ,g) satisfy the following equations

dη = 0,∇xξ = φX

(∇xφ) =−g(X ,Y )ξ −η(Y )X +2η(X)η(Y )ξ

Then M is referred to as Para-sasakian manifold.

If M admits 1-form η , such that (∇x,η)Y = η(X)η(Y )−g(X ,Y ), for all X ,Y ∈M, then
para-sasakian manifold is a special manifold.

De�nition 1.2.15. An n-dimensional di�erentiable manifoldMn
is Lorentzian Para-Sasakian

manifold of it admits a (1,1) -tensor �eld φ , vector �eld ξ ,1-form η and a Lorentzian metric g

which satis�es

φ 2X = X +η(X)ξ

φξ = 0

η(ξ ) =−1

η(φX) = 0

g(X ,ξ ) = η(X)

g(φX ,φY ) = g(X ,Y )+η(X)η(Y ),

(∇φ )Y = g(X ,Y )ξ +η(Y )X +2η(X)η(Y )ξ ,
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∇xξ = φX

Where X and Y are arbitrary vector �elds, ∇X denote covariant di�erentiation in the direction

of X with respect to g.
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2 Chapter 2

2.1 Preliminaries

Particularly in this chapter, we will venture into defining tensors, curvature tensors,
kemontsu manifolds, para kemontsu manifolds and other related manifolds.

Terminologies and De�nitions

2.1.1 Tensors

Given two non-negative intergers k and l we define T k,l(V ) to be the vector space of all
multilinear maps f (V ∗1 , ...,V

∗
k ,v1, ...,),V ∗∗, ...,V ∗ ∗V → R, with k arguments in V* and L

arguments in V

The elements of T K,L(V ) are called tensors of degree (or order) (K,L).

If we have a basis e1,e2, ...,en of V, we uniquely determine a tensor T of degree (K,L) by
the nk+1 numbers referred to as the coe�icients of the tensors

T i1,...,ik
j1,..., jk = T (ei1, ...,eik ,e j1,...,e jl

)

Conversly there exists a tensor of degree (K,L) for any choice of these numbers. Thus the
vector space T k,l(V ) has dimension nk+1

A tensor of type (k,0) for some k ≥ 1 is called contravariant and a tensor of type (0,1) for
some k ≥ 1 is called covariant.

For tensor T i1,...,ik
j1,..., jk
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the indices i1, ..., ik are contravariant and indices j1, ..., jk are covariant.

Superscripts are used to denote contravariant indices and subscripts are used to denote
covariant indices.

Examples

1. For k=l=0, we have a tensor of degree (0,0). Tensors of degree (0,0) are referred to as
scalars.

2. T 0,1(V ) This is the space of all linear maps V → R. Therefore T 0,1(V ) = V ∗ and a
tensor of degree (0,1) is a linear functional on V

3. T 1,0(V )

Similarly, we have that T 1,0(V ) equals V ∗∗ which we identify with V.

Thus, T 1,0(V ) =V , and a tensor of degree (1,0) is an element of V.

4. A linear mapping S :V −→V defines a tensor T of degree (1,1) by T (V ∗,V )= [V ∗,S(V )];V∗∈
V ∗,v ∈V

In a basis e1, ...,en, this tensor has the coe�icients T i
j = T (ei, ...,e j) = [ei,S(e j)] = S j

where, Si j is the matrix representation of S in the basis e1, ...,en

Fundamental Properties of Tensors

1. Addition.
The sum of to or more tensors of the same rank and type .i.e the same number of
contravariant indices and the same number of covariant indices is also a tensor of the
same rank and type.
Thus if Amp

q and Bmp
q are tensors then Cmp

q = Amp
q +Bmp

q is also a tensor (sum of tensors)
or λAmp

q +µBmp
q can be formed, with the help of the above tensors, which will satisfy

the law of transformation, where λ and µ are invariants.

2. Subtraction.
The di�erence of two tensors of the same rank and type is also a tensors of the same
rank and type.
Thus if Amp

q and Bmp
q are tensors, then Dmp

q = Amp
q −Bmp

q is also a tensor.
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Example

The tensor Ai j can be wri�en as Ai j =
1
2(Ai j +A ji)+

1
2(Ai j−A ji).

Now (Ai j +A ji) is symmetric part and (Ai j−A ji) is skew-symmetric part of the tensor
Ai j.
Thus by covariant (or contavariant) tensor of the second order is the sum of a symmetric
tensor and a skew symmetric tensor.

3. Outer Multiplication. The product of two tensors is a tensor whose rank is the sum of
the ranks of the given tensors.
This product which involves temporary multiplication of the component of the tensor
is called the outer product.
For example Apr

q Bm
s =Cpm

q is the outer product of Apr
q and Bm

s

However, it must be noted that not every tensor can be wri�en as a product of two
tensors of lower rank. Thus division in the usual sense of one tensor by another is not
defined that is, division of tensors is not aways possible.

4. Contraction.

If one contravariant and one covariant index of a tensor are set equal than the result
indicated that a summation over the equal index is to be taken according to the sum-
mation convention, such that the resulting sum is a tensor of rank two less than that
of the original tensor. This process is called contraction.

For example in the tensor of rank 5 Ampr
qs , by se�ing r = s we obtain Ampr

qr = Bmp
q , a

tensor of rank 3. Further by se�ing p = q, we get Bmp
p =Cm

n , a tensor of rank 1.
As another example from the mixed tensor Ai

j IF WE SET i = j, then we get an invariant
A i.e. from a tensor (mixed) of rank 2, we get an invariant (rank zero).

5. Inner Multiplication. We can also combine outer multiplication and contraction to
produce new tensors. By the process of outer multiplication of two tensors followed
by a contraction, we obtain a tensor called an inner product of the given tensor. This
process is called Inner multiplication of two tensors.

For example, given the tensors Amp
q and Br

st , the outer product is Amp
q Br

st .
Le�ing q = r, we obtain the inner product Amp

q Br
st . Again pu�ing q = r and p = s,

another inner product Amp
r Br

pt is obtained.

Note: Inner and outer multiplication of tensors is commutative and associative.

It may be noted that we never contract two indices of the same type, as the reslting
sum is not necessarily a tensor.
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6. �otient Law.

Given the set of functions, we want to show whether it forms the components of a
tensor or not, the method that it satisfies the equation of transformation or not is
troublesome. In practice a simple test is provided by the quotient law.

The quotient law states that If an inner product of any quantity say X with an arbitrary
tensor is itself a tensor then X is also a tensor.

Example

The set of N3 functions Ai jk from the components of a tensor (rank 3 contravariant) if
Ai jkBp

i j =Cpk, provided that BP
i j is an arbitrary tensor and Cpk a tensor.

The equation A−i jkB−P
i j =Cpk (transforms x̄ ) is satisfied.

2.1.2 Vector and 1-Form

1 index tensors. In tensor notation, a 1-form (or a covector at a point) is a tensor with a
single subscript index, e.g., αi. If we have a 1-form α and a vector field v, then we can
combine these to make a function:

α(v) := viαi.

Denoting the space of vector fields as χ(M), this defines a linear map α : χ(M)→C∞(M)

which is C∞(M) -linear in the sense that for any v∈ χ(M) and f ∈C∞(M),α( f v) = f α(v).

AnyC∞(M) -linear map α : χ(M)→C∞(M) is given by a 1-form in this way, so we can alter-
nately define 1-forms as maps of this kind. This is also denoted as a pairing,α,v :=α(v).The
set of 1-forms over M is denoted Ω1(M)

De�nition 2.1.1. The curvature operator R of a connection ∇ is the association of two vector

�elds X ,Y ∈ χ(M) to the map R(X ,Y ) : χ(M)→ χ(M) de�ned by

R(X ,Y )Z := ∇X ∇Y Z−∇Y ∇X Z−∇(X ,Y )Z
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The curvature operator can be seen as a way of measuring the non-commutativity of the

connection. This operator defines a

 3

1

 tensor, the Riemann curvature tensor R

R = Rl
i jkδxi⊗δx j⊗δxk⊗ δ

δxl ,

where coe�iecient Rl
i jk is the l-th coordinate of the vector R

(
δ

δxi ,
δ

δx j

)
δ

δxk and are found

to be Rl
i jk = Γl

jk,i−Γl
ik, j +Γm

jkΓl
im−Γm

ikΓl
jk

We will assume that (M,g) is a Riemannian manifold and ∇ is the Levi-Civita connection.
From the Riemannian curvature tensor, we can define a new 4-covariant tensor by lowering
the last index of R with the metric g:

R(X ,Y,Z,W ) = g(R(X ,Y )Z,W )

In a coordinate system, the coordinates of this 4-covariant Riemann curvature tensor are
Ri jkl = Rm

i jkgml .

The Riemann curvature tensor has the following symmetries:

label= Bianchi identity. Ri jkl +R jkil +Rki jl = 0

lbbel= Ri jkl =−R jikl

lcbel= Ri jkl =−Ri jlk

ldbel= Ri jkl = Rkli j

Ricci tensor is an important geometric object in general relativity.

2.1.3 Manifolds

A (real) n-dimensional manifold is a topological space M for which every point x ∈M has
a neighbourhood homeomorphic to Euclidean space Rn.
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De�nition 2.1.2. Given a topological space M, a chart (local coordinate map) is a pair (U,

ϕ), where U is an open subset of M and

ϕ : U −→Ω is a homomorphism onto an open subset, Ω = ϕ(U), of ℜnϕ
(for some nϕ ≥ 1).

For any p∈M a chart, (U,ϕ), is a chart at p i� p∈U . If (U,ϕ) is a chart then the functions
x1 = poϕ are called local coordinate and for every p ∈U the tuple (x1(p), ...,xn(p)) is the
set of coordinates of p with respect to the chart.

The inverse, (Ω,ϕ−1), of a chart is called a local parametrization.

Given a topological space M and and any two intergers, n≥ 1 and k ≥ 1 a Ck n-atlas A, is
a family of charts, (U : ϕ) such that

1. ϕ(Ui)ℜ for all i

2. The Ui cover M, i.e M =Uui

3. Whenever Ui∩U j 6= φ , the transition map ϕi j (and ϕ) is a Ck-di�eomorphism.

De�nition 2.1.3. A manifold with boundary is smooth if the transition maps are smooth.

For an arbitrary subset X ⊆ Rm
, a function f : X −→ Rn

is called smooth if every point in X

has some neighborhoodwhere f can be extended to a smooth function.

De�nition 2.1.4. A Hausdor� topological space M is an n-dimensional topological manifold

if it admits an atlas Uα ,φβ , φα −→ Rn,n ∈ N

De�nition 2.1.5. Let M be the set of all e in�nity vector �eld on A the brackets [] is de�ned

by mapping

[] : M ∗M→M such that for x,y in M and [x,y] f = xy f − yx f

where f is smooth function for x,y,z in M we have

1. [X ,Y ]+ =−[Y,X ] skew commutative (symmetric)
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2. [X +Y,Z] = [X ,Z]+ [Y,Z]

3. [ f X ,gY ] = f g[X ,Y ]+ f (XgY )−g(Y f )X

4. [[X ,Y ],Z]+ [[Y,Z],X ]+ [[Z,X ],Y ] = 0

Note that the last equation 4 above is referred to as Jacobs identity

De�nition 2.1.6. Consider two vector �elds X ,Y ∈ χ The Lie bracket or commutator of X

and Y is the vector �eld

[X ,Y ] = XoY −YoX .

Considering a chart x : U ⊂ M → ℜn, the vector fields X and Y have the expressions
X = X i δ

δxi and Y = Y i δ

δxi . Computing the expression of the Lie bracket in coordinates
yields to the result:

[X ,Y ] = (X .Y i−Y.X i) δ

δxi .

The commutator has the following properties: given X ,Y,Z ∈ χ(M)

1. Bilinearity: for α,β ∈ℜ, [αX+βY,Z] =α[X ,Z]+β [Y,Z] and [Z,αX+βY ] =α[Z,X ]+

β [Z,Y ]

2. Antisymmetry: [X ,Y ] =−[Y,X ]

3. Jacobi identity : [X , [Y,Z]]+ [Y, [Z,X ]]+ [Z, [X ,Y ]] = 0

4. Leibnitz rule: for any f ,g ∈C∞, [ f X ,gY ] = f g[X ,Y ]+ f (X .g)Y −g(Y. f )X

Di�erential Manifold

A manifold M is called a di�erential manifold of classCk if there is an atlas of M(Uα ,φα)|α ∈ I
such that, for any α,β ∈ I, the composites

φβ oφ−1
α : φβ (Uα ∩Uβ )→ Rn is di�erentiable of class Ck on M. If instead, the atlas is of

class Ck, then M is said to have a di�erentiable (smooth) structure and is called a smooth
(di�ential) manifold.
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Riemannian Manifold

Let Tp be the tangent space at the point p of a di�erentiable manifold M. If we single out
a real valued bilinear, symmetric and positive definite function g on the ordered pairs of
tangent vectors at each point p in M, then M is considered to be a Riemannian manifold
and g is called the metric tensor of M. Thus, for two vectors X, Y in Tp, we have

1. g(X ,Y ) ∈ℜ

2. g(X ,Y ) = g(Y,X)

3. g(aX +bY,Z) = ag(X ,Z)+bg(Y,Z)

4. g(X ,X)> 0

5. If X and Y are C∞ fields with domain A, then g(X ,y) is a C∞ function on A.

Complex Manifolds

De�nition 2.1.7. We say that a manifold is Complex if it is di�erentiable with a holomorphic

atlas. Such manifolds are of even dimensions; 2n and having a collection of charts (U j,Z j)

that are one to one maps of corresponding U j to Cm
such that every non-empty intersection

U j∩Uk the maps are z jz−1
k are holomorphic.

Given the subset of R3, a two sphere S2 defined by x2 + y2 + z2 = 1 is a complex manifold.
Here we can use a stereographic projection from the North pole to the real plane R2 with
coordinates X,Y given by

(X ,Y ) =
( x

1−z ,
y

1−z

)
This can be done for any point except the North Pole itself (corresponding to z = 1). To
include the North Pole, we introduce a second chart, in which we stereographically project
from the South pole:

(U,V ) =
( x

1+x ,
y

1+x

)
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which holds for any point S2 except for the South (pole at z = 1). In both patches, we can
now define complex coordinates,

Z = X + iY,Z = X− iY,W =U− iV,W =U + iV ,

and show that on the overlap of the patches, the transition is holomorphic indeed, on the
overlap we compute that W = 1

z .

Holomorphic functions on manifolds

Let U ⊂ X be open, f : U→C be a function. Then f is holomorphic on U if, taken (Uα,zα)

such that U ∩Uα 6= φ , the function

f ◦ z−1
α : zα(Uα ∩U)→C

is holomorphic. This definition does not depend on the choice of the coordinate (Uα,zα).

In addition, we define OX(U) := f : U →C | f is holomorphic

Almost Complex Manifolds

De�nition 2.1.8. An almost complex structure on a manifold M is an operator 1 : T M 7−→
T M such that I2 =−Id. It is called integrable if I is induced by a complex structure.

Let M be a Haudorf topological space. In order to analyze M locally, we use open
charts, that is to say, pairs of the type (U,ϕ) where U is an open subset of M and
ϕ : U 7−→ ϕ(U) ⊂ Rk is a homeomorphism of U onto an open subset of Rk. A collec-
tion of charts (U∞,ϕα)α ∈ A gives M the structure of a smooth manifold of dimen-
sion k if the open sets U∞ cover M, and if for all pairs of indices α,β the transition
function ϕβ oϕ−1

α : ϕα(Uα ∩Uβ ) 7−→ ϕβ (Uα ∩Uβ ) is a smooth map. When we say that
(U∞,ϕα)α ∈ A is an atlas of M.
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A complex structure on a topological space M consists of a family (U∞,ϕα)α ∈ A where
U∞ is an open subset of M and U∞ : U∞ 7−→Cm is a homeomorphism onto an open subset
Cm, such that

1. M =UαtAU∞

2. For each pair of indices α,β ∈ A the function ϕβ oϕ−1
α : ϕα(Uα ∩Uβ ) 7−→ ϕβ (Uα ∩Uβ )

is holomorphic.

Each pair (U∞,ϕα) is called a complex chart, and the whole collection (U∞,ϕα)∞ ∈ A is
called a comples atlas. The integer n is the complex dimension of M.

A complex manifold of dimension n is, in a natural way, a real manifold of dimension
2n. For given a point p ∈ M, let us consider a complex chart (U,∞) with p ∈ U and
ϕ(q) = (z1(q), ...,zn(q)). The complex valued function z f can be decomposed in terms of
their real and imaginary parts, z f (q) = x j(q)+ iy j(q), decomposition that in turn induces
a map.

q 7−→ (x1(q),y1(q), ...,xn(q),yn(q))

from U onto an open subset of R2n. This function defines a real local chart of M. It is
easy to see that transition functions of these charts of M are smooth functions. Thus, the
collection of all such charts on M as a real di�erentiable manifold of dimension 2n.

The set σx j|p,σy j|p forms a basis of the tangent space TpM. Using it, we define a linear
isomorphism,

J = Jp : TpM 7−→ TpM

by

J(σx j|p,σy j|p,J(σy j|p) =−σx j|p,
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Kenmotsu manifolds

De�nition 2.1.9. Let M2n+1(φ ,ξ ,η ,g) be an almost contact Riemannian manifold, where

φ is a (1,1)-tensor �eld φ , vector �eld ξ ,1-form η and a Riemannian metric g.

We know that;

φξ = 0

η(ξ ) = 1

η(φX) = 0

φ 2X =−X +η(X)ξ

g(X ,ξ ) = η(X)

g(φX ,φY ) = g(X ,Y )+η(X)η(Y )

for any vector fields X and Y on M.

De�nition 2.1.10. We call an almost contact metric manifold Mn(φ ,η ,Ξ,g) a Kenmotsu
manifold if the following conditions hold:

(∇xφ)Y =−η(Y )φX +g(φX ,Y )ξ , where X ,Y ∈ χ(M)

∇xξ = X−η(X)ξ

Where ∇ is the Riemannain connection of g.

The following relations holds for Kenmotsu manifolds;

(∇xφ)Y = g(φX ,Y )
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η(R(X ,Y )Z) = η(Y )g(X ,Z)−η(X)g(Y,Z)

R(X ,Y )ξ = η(X)λ −η(Y )λ

(a) R(ξ ,X)Y = η(Y )X−g(X ,Y )ξ

(b) R(ξ ,X)ξ = X−η(X)ξ

where R is the Riemannian curvature tensor and S is the Rici-Tensor.

In a Riemannian Manifold we also have g(R(W,X)Y,Z)+g(R(W,X)Z,Y ) = O, for every
vector fields X ,Y,Z

Almost paracontact manifold

De�nition 2.1.11. Let Mn be an n-dimensional di�erentiable manifold endowed with struc-

ture tensors (φ ,ξ ,η) where φ is a tensor of type (1,1), ξ is a vector �eld, η is a 1-form such

that

η(ξ ) = 0 (1.1)

φ 2(X) = X−η(Y )ξ ;= φX (1.2)

Then M is called an almost paracontact manifold.
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Paracontact Riemannian Structure

De�nition 2.2.3.2

Let g be the Riemannian metric satisfying such that, for all vector fields X and Y on M,

g(X ,ξ ) = η(X) (1.3)

φξ = 0,η(φX) = 0,φ = n−1 (1.4)

g(φX ,φY ) = g(X ,Y )−ξ (X)ξ (Y ) (1.5)

Then the manifold Mn is said to admit an almost paraconract Riemannian structure
(φ ,ξ ,η ,g)

Para-Kenmotsu manifold

De�nition 2.1.12. A manifold of dimension ’n’ with Riemannian metric ’g’ admitting a

tensor �eld φ of type (1,1), a vector �eld ξ and a 1-form η satisfying (1.1) (1.3) along with

(∇x,η)Y − (∇y,η)x = 0 (1.6)

(∇x,∇yY )Z = [−g(X ,Z)+η(X)η(Z)]η(Y +[−g(X ,Y )+η(X)η(Y )]) (1.7)

∇xξ = φ 2X = X−η(X)ξ (1.8)

is called a Para kenmotsu manifold or brifely P-kenmotsu manifold.



21

Properties of Para-Kenmotsu Manifolds

Proposition

Let (M,φ ,η ,ξ ,g) be a para-kenmotsu manifold, then we have

R(X ,Y )ξ = η(X)Y −η(Y )X ,

R(X ,ξ )Y = g(X ,Y )ξ −η(Y )X ,

Ric(X ,ξ ) =−2nη(X)

k(X ,ξ ) =−1

(∇zR)(X ,Y,ξ ) = R(X ,Y )Z +g(Y,Z)X−g(X ,Z)Y

where Ric is the Ricci tensor and X ,Y,Z ∈ TpM

2.1.4 Riemannian Connections

De�nition 2.1.13. We call a connection ∇ Riemannian if the following conditions holds;

1. ∇ is symmetric or torsion free that is ∇xY −∇yX = [X .Y ]

2. g is covariant constant with respect to ∇ ∇xg = 0

De�nition 2.1.14. The torsion tensor of a connection V is a vector valued bilinear function

T which assigns to each pair of C∞
�elds X, Y , with domain A, a C∞

vector �eld T(X,Y) with

domain A de�ned by,

T (X ,Y ) = ∇xY −∇yX− [X ,Y ]

If T (X ,Y ) = 0, then the connection ∇ is said to be torsion free or symmetric.



22

3 Chapter 3

3.1 Literature Review

3.1.1 Introduction

The purpose of this chapter is to review the literature, both the theoretical and the em-
pirical literature. First, the chapter presents the theoretical literature of para-Kemonstu
manifolds, in comparison to other manifold types. The chapter zooms in to discuss the
empirical literature testing the relevance of the theories presented. Also, the chapter
presents the conceptual framework and provides a summary to the reviewed literature.

3.1.2 Theoretical Review

Manifolds theory is basic for the theory of Riemannian, Einsteinian, and Lie groups ge-
ometries. The inception of manifold concept in the 1960 into general relativity by Martin
Kruskal, shed more light on the topic of manifolds, and highlighted the topological char-
acteristics, global and local, of space-time models. Manifolds exist everywhere, mostly in
many physical phenomena, and they can be modelled mathematically.

S. Bochner studied Be�i numbers of the Kahler manifolds, and introduced a tensor which
dominated his theory of Weyl tensors in Riemann manifolds. Here, he considered a
flat manifold as a real space form extension. The Weyl tensor is a conformal invariant
of the Riemann manifolds, however, several a�empts were made to find a geometrical
interpretation. Tensors can be nicely introduced by decomposition of the curvature tensor
spaces. Sasakian, co-Kahler, and Kenmotsu manifolds’ classes are classified by the almost
Hermitian manifolds (M(2n+1)) for which there exists maximal dimension (n+1)2 for
the automorphism group. The properties of the Riemann connections of the co-Kahler,
Kenmotsu, and Sasakian manifolds help in characterizing these manifolds.

3.1.3 The Conceptual framework

A conceptual framework is a wri�en or visual presentation that explains either graphically,
or in narrative form, the main things to be studied, the key factors, concepts or variables
and the presumed relationship among them (Miles and Huberman, 1994). This research
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will look at curvature tensors in general, and explore Sasakian manifolds and curvature
tensors in k-contact.

Mishra (1970), and Pokhariyal (1979) defined a new set of new curvature tensors relating
to Weyl tensor in the study of curvature tensors’ Relativistic significance. The definition
of Weyl’s projective curvature tensor was based on the geodesic correspondence since it
contained a specific type of distribution. Correspondingly, the new tensors did not depend
on the variation within the two spaces; instead, they indicated that the arrangement of
the vectors in question prior to being acted on by the tensor of the vector field over the
metric potentials and ma�er tensors have a significant role in the configuration of the
di�erent geometrical and physical tensor properties.

Tripath, Mukut Mani, and Gupta (2011) explored Sasakian manifolds and curvature tensor
in k-contact and inspected the properties of the Sasakian manifolds where they posed the
necessary conditions for the contact manifolds. W5 -curvature tensor is a field that has
a�racted several authors leading to rich outcome for application in geometric modelling.
Deszcz (1992) initiated the aspect of pseudo-symmetric manifolds. Ojha (1986) studied
the properties of the Sasakian and Kahler m-projective curvature manifolds. Additionally,
he argued that such tensors linked con-harmonic curvature tensors, concircular curvature
tensors, conformal curvature tensors from one side to H-projective curvature tensors on
another.

Singh (1965) also explored the Relativistic importance of the projective curvature tensor
initiated by Weyl, a concept that is very common in the Geometry subject. The equation
for the tensor was given by;

W (X ,Y,X ,T ) = R(X ,Y,Z,T + 1
n−1 [g(X ,Y )Ric(Y,T )−g(X ,T )Ric(Y,Z)]

Some of its applications will be instrumental in the discussions in this paper. However, the
applications are limited in the extent of their usage and the topics explored. Some of the
applications including the minimal submanifolds, Morse Theory, and Kahler manifolds are
covered implicitly. The curvature does not emerge explicitly in Mathematical studies, but
accompanies the theory of curves and the Euclidean Space surfaces. Riemann’s definition
of curvature tensor is abstract and rigorous, taking Gauss’ work as reference.
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De and Bismas (2006) explored the flat contact metric manifold and ascertained that
the k-contact metric manifold is conformally flat if it belongs to the Einstein manifold.
However, Dwidedi and Kim (2010) could not find proof showing that if a Sasakian Manifold
is in Einstein Manifold, then it is conharmanically flat. Pokhariyal and Mishra (1970)
define several tensors that include;

W1(X ,Y,Z,T ) = R(X ,Y,Z,T + 1
n−1 [g(X ,Z)Ric(Y,Z)−g(Y,T )Ric(X ,Z)]

W2(X ,Y,Z,T ) = R(X ,Y,Z,T + 1
n−1 [g(X ,Z)Ric(Y,T )−g(Y,T )Ric(X ,T )]

W3(X ,Y,Z,T ) = R(X ,Y,Z,T + 1
n−1 [g(Y,Z)Ric(X ,T )−g(Y,T )Ric(X ,Z)]

W4(X ,Y,Z,T ) = R(X ,Y,Z,T + 1
n−1 [g(X ,Z)Ric(Y,T )−g(Y,T )Ric(X ,Z)]

W5(X ,Y,Z,T ) = R(X ,Y,Z,T + 1
n−1 [g(X ,Z)Ric(Y,T )−g(Y,T )Ric(X ,Z)]

W6(X ,Y )Z = R(X ,Y )+ 1
n−1 [g(X ,Z)Y −S(Y,Z)X ]

Pokhariyal G.P [20] later defined a m-projective curvature field tensor W∗, as;

W ∗ (X ,Y,Z,U) =′ R(X ,Y,Z,U)− 1
2(n−1) [S(Y,Z)g(X ,U)−S(X ,Z)g(Y,U)]

where,

W ∗ (X ,Y,Z,U) = g(W ∗ (X ,Y )Z,U)

and

′R(X ,Y,Z,U) = g(′R(X ,Y )Z,U)

Also, Pokhariyal (1985) defines W5 curvature tensor to be the equation;

W5(X ,Y )Z = R(X ,Y )Z + 1
n−1 [g(X ,Z)φY −S(X ,Z)y]
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During the same period, Pokhariyal defined W7,W8andW9 as follows;

W7(X ,Y,Z,T ) = R(X ,Y,Z,T )+ 1
n−1 [g(Y,Z)Ric(X ,T )−g(X ,T )Ric(Y,Z)]

and,

W8(X ,Y )Z = R(X ,Y )Z + 1
n−1 [S(X ,Y )Z−S(Y,Z)X ]

where

S(X ,Y ) = g(QX ,Y ) = (n−1)g(X ,Y ) = R(X ,Y ),

Q is the Ricci operator, that is, the endomorphic linear tangent space at each of the points.

W9(X ,Y,Z,T ) = R(X ,Y,Z,T )+ 1
n−1 [g(Z,Y )Ric(X ,Y )−g(Y,Z)Ric(X ,T )]

Prakasha D.G, Vasant, and Kakasab (2016) realized that a φ−W5 -generalized flat Sasakian
Space form is conformally flat.

Matsumoto K introduced the Lorentzian para-Sasakian ideology in 1988, while Mihai
I and Rosca R in 1992 defined the idea of LP Sasakian and got several outcomes. The
other authors to have explored the LP-Sasakian manifolds’ field include Shaikh A.A (2004)
and U.C. De. (1999). On the other hand, Bagewadi C.S and Kumar K.T. (2011) studied
the LP-Sasakian manifolds while Ahmet Yildiz and U.C. De. examined the tensors in
Kenmotsu Sasakian manifolds. W2 -curvature tensor and its related skew-symmetric and
symmetric tensors in the Einstein Sasakian manifolds was also studied by Pokhariyal.
U.C. De and Sarkar (2009) did an extensive analysis on the Para-Sasakian involving the
W2 – symmetric tensor and proved that the W2 – symmetric para-Sasakian manifold have
a constant curvature and thus it is an LP-Sasakian Manifold, similar to the recurrent W2
P-Sasakian. Other authors that contributed to the W2- include Moindi S.K, Pokhariyal
P.G and Njori P.W., , where they proved the W2 recurrent P-Sasakian manifold theorem.

One of the most significant analytical methods for di�erential geometry is the famous
Bochner technique, founded in the 1960s by S. Bochner, K.Yano, and others to investigate
the connection topology and curvature of the Riemann manifold. Since the 1970s, the non-
compact (complete) Riemann manifolds have been integrated in many researches using
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the Bochner technique. There are known results of the relations in Riemann geometry
between topology and curvature, and between the local and global aspects of a Riemann
manifold. At large, many results exist; on locally conformally flat Riemann manifolds.
S. Goldberg supplemented his own theorem on conformally flat homogeneous Riemann
manifold by arguing that there exists a constant curvature for a locally conformal flat
Riemann manifold if its Ricci tensor is parallel and it is either positive or negative definite.
However, completeness and compactness characteristics do not feature in Goldberg’s
theorems.

Ricci Flow

The idea of Ricci-flow was introduced by R. Hamilton (1982) and he explained the hur-
dles in manifold geometry. For example, Hamilton indicated that if there exist singular
points in manifold geometry, they can be mitigated under Ricci-flow. Ricci-solitons are
the stationary points under Ricci -flow. The Ricci-flow equation as given by Hamilton is as;

δg
δ t = 2Ric(g)

Where Ric is S in the space of metric on M.

Ricci-Soliton

Hamilton then moved to define a Ricci-Soliton (g,V,λ ) on a Riemann manifold M as;

Lvg+2S+2λg = 0

Where S- is the Ricci tensor, Lv is Lie Derivative operator on M in direction V and λ is
a scalar. This equation for the Ricci soliton is said to either shrink when λ is negative,
steady when λ is zero, or expanding when λ is positive. Further, Hamilton realized that a
compact Ricci-solitons belong to the points of the Ricci flow below;

δg
δ t =−Ric(g)

Projected from the metric space to its modulo quotient, scallings, and di�eomorphism
that rise o�en as blow-up limit for the Ricci-flow on compact manifold. In 1923, Einstein
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ascertained that a manifold is reducible if a positive definite Riemann manifold (M,g)
allows another parallel symmetric covariant tensor apart from the constant multiple of
the metric tensor. The su�icient conditions for the existence of such tensors were then
obtained by Levi, and later; a generalization of Levi’s results was done by Sharma and
showed that a second order parallel tensor on an n > 0 space of a constant curvature is a
constant multiple of the metric tensor. Sharma also showed that there exists a non-zero
parallel 2-form and while he was examining the k-contact manifolds Ricci solitons, he
found out that there exists a condition where the initial derivative disappears, a condition
that disrupts the Ricci solitons rule. He then moved on to prove that a comprehensive
k-contact gradient result is compact Sasakian and Einstein.

3.1.4 Curvature tensor

Many scholars agree that the curvature tensor is the most significant isometry invariant
of the Riemann metric. For instance, a study on the conditions on the curvature tensors
in obtaining geometric and topological restrictions concluded that positive curvature can
only exist on trivial topological manifolds. Previous studies have shown that the Riemann
curvature tensor is clearly important in general relativity.

The fourteen invariants of the Riemann curvature tensor are divided into four, for the
Weyl tensor, three, for the Einstein curvature tensor, and six, for the combined Einstein
and Weyl tensors. According to Petrov and Sharma and Husain, the four invariants of
the Riemann tensor in empty spacetimes have been calculated to classify the Riemann
tensors. Petrov studied the space-ma�er tensor for which all the algebraic properties of
the Riemann curvature holds more generally than the Weyl conformal curvature.
The space-time tensor is given as

Pabcd = Rabcd−Aabcd +δ (gacgbd−gadgbc),

where Aabcd =
λ

2 (gacTbd +gbdTac−gadTbc−gbcTad) and Tab is given by the Einstein’s field
equations Rab− 1

2Rgab = λTab. Here λ is a constant and Tab is the energy-momentum
tensor. The tensor Pabcd is known as space-ma�er tensor.
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4 Chapter 4

A Para Kenmotsu manifold is an n dimensional manifold with Reimannian metric g
admi�ing a tensor field φ of type (1,1), a vector field ξ and a 1-form η satisfying

η(ξ ) = 1 (1)

g(X ,ξ ) = η(X) (2)

(∇X η)Y − (∇Y η)X = 0 (3)

(∇X ∇Y η)Z = [−g(X ,Z)+η(X)η(Y )]η(Z) (4)

+[−g(X ,Y )+η(X)η(Y )]η(Z)

(∇X φ) = g(φX ,Y )ξ −η(Y )φX (5)

It is known that in a P-Kenmotsu manifold the following relations hold:

S(X ,ξ ) =−(n−1)η(X) (6)

g(QX ,Y ) = S(X ,Y ) (7)

g(R(X ,Y )Z,ξ ) = η(R(X ,Y,Z)) (8)

= g(X ,Z)η(Y )−g(Y,Z)η(X)

R(ξ ,X)Y = η(Y )X−g(X ,Y )ξ (9)

R(X ,Y,ξ ) = η(X)Y −η(Y )X ;when X is orthogonal to ξ (10)

where S is the Ricci tensor, r is the scalar curvature and Q is the symmetric endormor-
phism of the tangent space at each point corresponding to the Ricci tensor and R is the
Reimannian curvature. Below we shall use A to denote the 1-form η .

4.1 W7 Curvature Tensor in Para Kenmotsu Manifold

Mishra and Pokhariyal gave the definition of W7 curvature tensor as

W7 = R(X ,Y )Z +
1

n−1
[g(Y,Z)QX−Ric(Y,Z)X ] (11)
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or

W 1
7 (X ,Y,Z,T ) = R1(X ,Y,Z,T ) +

1
n−1

[g(Y,Z)Ric(X ,T )−Ric(Y,Z)g(X ,T )]

De�nition 4.1.1. A Para Kenmotsu manifold is said to be �at if the Riemannian curvature

tensor vanishes identically i.e. R(X ,Y )Z = 0.

De�nition 4.1.2. A Para Kenmotsu manifold Mn is said to be W7 �at if W7 curvature tensor

vanishes identically i.e. W7(X ,Y )Z = 0.

Theorem 4.1.3. A W7 �at Para Kenmotsu manifold is a �at manifold

Proof
Given a W7 curvature tensor which is defined as

W 1
7 (X ,Y,Z,T ) = R1(X ,Y,Z,T )+

1
n−1

[g(Y,Z)QX−Ric(Y,Z)X ]

or

W 1
7 (X ,Y,Z,T ) = R1(X ,Y,Z,T )

+
1

n−1
[g(Y,Z)Ric(X ,T )−Ric(Y,Z)g(X ,T )]

If P-Kenmotsu space is W7 flat then W7 = 0,

0 = R1(X ,Y,Z,T )+
1

n−1
[g(Y,Z)Ric(X ,T )−Ric(Y,Z)g(X ,T )]

where Ric(X ,Y ) =−(n−1)g(X ,Y ) we have:

R1(X ,Y,Z,T ) =
1

n−1
[Ric(Y,Z)g(X ,T )−g(Y,Z)Ric(X ,T )]

=
1

n−1
[−(n−1)g(Y,Z)g(X ,T )+g(Y,Z)(n−1)g(X ,T )]

That is;

R1(X ,Y,Z,T ) = g(Y,Z)g(X ,T )−g(Y,Z)g(X ,T )

But in P-Kenmotsu manifold we have:

R1(X ,Y,Z,T ) = g(Y,Z)g(X ,T )−g(X ,Z)g(Y,T )
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=⇒ R1(X ,Y,Z,T ) = 0

or
Ric(X ,Y ) = 0

Hence the proof.

Corollary 4.1.4. AW7-�at P-Kenmotsu manifold is neither Einstein nor η-Einstein manifold.

Proof
A manifold is said to be Einstein manifold if a 6= 0 and b = 0 in the expression below

Ric(X ,Y ) = ag(X ,Y )+bη(X)η(Y )

and η-Einstein if a and b are none zero. From the results of the above theorem we have
shown that Ric(X ,Y ) = 0. This therefore, means both a and b are zero, hence, it is neither
Einstein nor η-Einstein manifold.

4.2 A W7-Semisymmetric P-Kenmotsu manifold

U.C.De and N. Guha gave the definition of semi symmetry as R(X ,Y )R(Z,T )V = 0

De�nition 4.2.1. AP-Kenmotsumanifold is said to beW7-semisymmetric ifR(X ,Y )W7(Z,T )V =

0

Theorem 4.2.2. A W7-semisymmetric P-Kenmotsu manifold is a W7-�at manifold.

Proof
If P-Kenmotsu space if W7-semisymmetric then R(X ,Y )W7(Z,T )V = 0

=⇒ g(R(X ,Y )W7(Z,T )V,L) = R1(X ,Y,W7(Z,T )V,L)

= g(X ,L)g(W7(Z,T )V,Y )−g(Y,L)g(W7(Z,T )V,X)

= A(X)W 1
7 (Y,Z,T )V −A(Y )W 1

7 (X ,Z,T )V = 0

but since A(X) 6= 0 and A(Y ) 6= 0

W 1
7 (Y,Z,T )V = 0

and
W 1

7 (X ,Y,T )V = 0

from
R(X ,Y )W7(Z,T )V = 0

Hence the theorem.
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Corollary 4.2.3. A W7-semisymmetric P-Kenmotsu manifold is neither Einstein nor η-

Einstein manifold.

Proof
A manifold is said to be Einstein manifold if a 6= 0 and b = 0 in the expression below

Ric(X ,Y ) = ag(X ,Y )+bη(X)η(Y )

and η-Einstein if a and b are none zero. From the results of the above two theorems, it
is clear that the Riemann curvature tensor R is equal to zero and consequently the Ricci
tensor Ric is also equal to zero. This therefore, means both a and b are zero, hence, it is
neither Einstein nor η-Einstein manifold.

4.3 A W7-symmetric P-Kenmotsu manifold

A P-Kenmotsu manifold is said to be W7-symmetric if ∇UW7(X ,Y )Z =W 1
7 (U,X ,Y )Z = 0

Theorem 4.3.1. A W7-symmetric and W7-�at P-Kenmotsu is a �at manifold.

Proof
From the previous theorem, we found out that a W7-semisymmetric manifold is a W7-flat
manifold and if P-Kenmotsu space is a W7-symmetric this implies

R(X ,Y,W7(Z,T,V ))−W7(R(X ,Y,Z),T,V )−W7(Z,R(X ,Y,T ),V )−W7(Z,T,R(X ,Y,V ))= 0

We expand the expressions as follows:

R1(X ,Y,W7(Z,T,V ),L) = g(X ,L)g(Y,W7(Z,T,V )) (12)

−g(Y,L)g(X ,W7(Z,T,V ))

= A(X)W 1
7 (Y,Z,T,V )−A(Y )W 1

7 (X ,Z,T,V )

W 1
7 (R(X ,Y,Z),T,V,L) = R1(R(X ,Y,Z),T,V,L) (13)

+
1

n−1
[Ric(R(X ,Y,Z),L)g(T,V )

−Ric(T,V )g(R(X ,Y,Z),L)]
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Then using Ric(X ,Y ) = S(X ,Y ) =−(n−1)g(X ,Y ) we get

W 1
7 (R(X ,Y,Z),T,V,L) = R1(R(X ,Y,Z),T,V,L)+

1
n−1

[−(n−1)R1(X ,Y,Z,L)g(T,V )

+(n−1)g(T,V )R1(X ,Y,Z,L)]

= R1(R(X ,Y,Z),T,V,L)−R1(X ,Y,Z,L)g(T,V )+g(T,V )R1(X ,Y,Z,L)

= g(R(X ,Y,Z),L)g(T,V )−g(T,L)g(R(X ,Y,Z),V )

= R1(X ,Y,Z,L)g(T,V )−A(T )R1(X ,Y,Z,V )

W 1
7 (Z,R(X ,Y,T ),V,L) = R1(Z,R(X ,Y,T ),V,L) (14)

+
1

n−1
[g(V,R(X ,Y,T )Ric(Z,L)

−Ric(R(X ,Y,T ),V )g(Z,L)]

Then using Ric(V,Y ) =−(n−1)g(V,Y ) we have

= R1(Z,R(X ,Y,T ),V,L)+
1

n−1
[g(V,R(X ,Y,T )(−(n−1))g(Z,L)

+(n−1)g(R(X ,Y,T ),V )g(Z,L)]

= R1(Z,R(X ,Y,T ),V,L)−R1(X ,Y,T,V )g(Z,L)+R1(X ,Y,T,V )g(Z,L)

= R1(Z,R(X ,Y,T ),V,L)

= g(Z,L)g(R(X ,Y,T ),V )−g(R(X ,Y,T ),L)g(Z,V )

= g(Z,L)R1(X ,Y,T,V )−R1(X ,Y,T,L)g(Z,V )

= A(Z)R1(X ,Y,T,V )−R1(X ,Y,T,L)g(Z,V )

W 1
7 (Z,T,R(X ,Y,V ),L) = R1(Z,T,R(X ,Y,V ),L) (15)

+
1

n−1
[g(T,R(X ,Y,V ))Ric(Z,L)

−Ric(T,R(X ,Y,V )g(Z,L)]

Then using Ric(X ,Y ) =−(n−1)g(X ,Y ) we have:

R1(Z,T,R(X ,Y,V ),L)+
1

n−1
[g(T,R(X ,Y,V )(−(n−1))g(Z,L)

+(n−1)g(T,R(X ,Y,V )g(Z,L)
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Also using g(T,R(X ,Y,V ) = R1(X ,Y,V,T ) we have:

R1(Z,T,R(X ,Y,V ),L)−R1(X ,Y,V,T )g(Z,L)

+R1(X ,Y,V,T )g(Z,L)

= R1(Z,T,R(X ,Y,V ),L)

= g(Z,L)g(T,R(X ,Y,V ))−g(T,L)g(Z,R(X ,Y,V ))

= A(Z)R1(X ,Y,V,T )−g(T,L)R1(X ,Y,V,Z)

= A(Z)R1(X ,Y,V,T )−A(T )R1(X ,Y,V,Z)

Pu�ing together 12, 13, 14, and 15 we have:

A(X)W 1
7 (Y,Z,T,V )−A(Y )W 1

7 (X ,Z,T,V )

−R1(X ,Y,Z,L)g(T,V )+A(T )R1(X ,Y,Z,V )

−A(Z)R1(X ,Y,T,V )+R1(X ,Y,T,L)g(Z,V )

−A(Z)R1(X ,Y,V,T )+A(T )R1(X ,Y,V,Z) = 0

From the requirement thatW 1
7 (X ,Y )Z be symmetric, the termsW 1

7 (Y,Z,T,V ) andW 1
7 (X ,Z,T,V )

vanish. Due to the skew-symmetric property of R1(X ,Y,Z,V ) in its last two variables, the
coe�icients of A(Z) cancel out. The same applies to the coe�icients of A(T ). We then
remain with the expression

R1(X ,Y,T,L)g(Z,V )−R1(X ,Y,Z,L)g(T,V ) = 0

Since g(Z,V ) and g(T,V ) 6= 0 for arbitrary vectors T,V,Z, we must have R1(X ,Y,Z,L) = 0.
Hence the theorem.
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5 Chapter 5

5.1 A W7-Recurrent P-Kenmotsu manifold

De�nition 5.1.1. A manifold Mn
is said to be a recurrent manifold if

(∇U R)(X ,Y,Z) = B(U)R(X ,Y,Z)

where B is the associated recurrence 1-form.

De�nition 5.1.2. Similarly, it is Ricci recurrent if

(∇U Ric)(X ,Y ) = B(U)Ric(X ,Y )

De�nition 5.1.3. We shall refer to a P-Kenmotsu manifold as W7-recurrent if

(∇UW 1
7 )(X ,Y,Z,T ) = B(U)W 1

7 (X ,Y,Z,T ) (16)

Theorem 5.1.4. If a P-Kenmotsu manifold is W7-recurrent and Ricci recurrent, then for the

same recurrence 1-form, it is recurrent.

Proof
From 16, we have

(∇UW 1
7 )(X ,Y,Z,T ) = B(U)W 1

7 (X ,Y,Z,T ) = (∇U R1)(X ,Y,Z,T )

+
1

n−1
[g(Y,Z)(∇U Ric)(X ,T )

−g(X ,T )(∇U Ric)(Y,Z)]

B(U)W 1
7 (X ,Y,Z,T ) = (∇U R1)(X ,Y,Z,T )

+
B(U)

n−1
[g(Y,Z)Ric(X ,T )−g(X ,T )Ric(Y,Z)]

(∇U R1)(X ,Y,Z,T ) = B(U){W 1
7 (X ,Y,Z,T )

− 1
n−1

[g(Y,Z)Ric(X ,T )−g(X ,T )Ric(Y,Z)]}

=⇒ (∇U R1)(X ,Y,Z,T ) = B(U)R1(X ,Y,Z,T )

Hence the theorem.
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5.2 A W7-Irrotational P-Kenmotsu manifold

De�nition 5.2.1. The rotation (Curl) of a W7 -curvature tensor on a P-Kenmotsu manifold

is de�ned as

RotW7(X ,Y )Z = (∇ZUW7)(X ,Y )Z +(∇XUW7)(U,Y )Z +(∇YUW7)(X ,U)Z− (∇ZUW7)(X ,Y )U

In consequence of Bianchi’s second identity, equation 29 becomes

RotW7(X ,Y )Z =−(∇ZW7)(X ,Y )U

If theW7 -curvature tensor is irrotational, then curlW7(X ,Y )Z = 0 and hence (∇ZW7)(X ,Y )U =

0

which gives

(∇ZW7)(X ,Y )U =W7(∇ZX ,Y )U +W7(X ,∇ZY )U +W7(X ,Y )∇ZU (17)

Theorem 5.2.2. TheW7 -curvature tensor in P-Kenmotsu manifold is irrotational if and only

if

Proof
Let W7 -curvature tensor be irrotational then pu�ing U = ξ in equation 11, we get

(∇ZW7)(X ,Y )ξ =W7(∇ZX ,Y )ξ +W7(X ,∇ZY )ξ +W7(X ,Y )∇Zξ (18)

Pu�ing Z = ξ in equation (11) and using equations (5) and (10), we get

W7(X ,Y )ξ = η(X)Y −η(Y )X +
1

n−1
[η(Y )QX−S(Y,ξ )X ] (19)

Using equations (19) and (18), we obtain

∇Zη(X)Y−η(Y )X+
1

n−1
[η(Y )QX−S(Y,ξ )X ] =W7(∇ZX ,Y )ξ +W7(,∇ZY )ξ +W7(X ,Y )∇Zξ

(20)
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∇Zη(X)Y−∇η(Y )X+ 1
n−1 [(∇Zη)(Y )QX+(∇ZQ)(X)η(Y )−(∇ZS)(Y,ξ )X+(∇ZX)S(Y,ξ )X ]

= η(∇ZX)Y −η(Y )∇ZX + 1
n−1 [η(Y )Q∇ZX−S(Y,ξ )∇ZX ]+η(X)∇ZY −η(∇ZY )X

+ 1
n−1 [η(∇ZY )QX − S(∇ZY,ξ )X ] +W7(X ,Y )Z−η(Z)[η(X)Y −η(Y )X + 1

n−1 [η(Y )QX −
S(Y,ξ )X ]

Using (∇X η)(Y ) = g(X ,Y )−η(X)η(Y ) in the equation above, we btain

q(Z,X)Y −η(Z)η(X)Y −g(Z,Y )X +η(Z)η(Y )X

+
1

n−1
[g(Z,Y )QX−η(Z)η(Y )QX +(∇ZQ)(X)η(Y )

− (∇ZS)(Y,ξ )X−∇ZX)S(Y,ξ )]

=W7(X ,Y )Z−η(Z)η(X)Y +η(Z)η(Y )X

− 1
n−1

[η(Z)η(Y )QX +η(Z)S(Y,ξ )X ]

Simplifying the above equation and using equation (11), we obtain

g(Z,X)Y−g(Z,Y )X+
1

n−1
[g(Z,Y )QX+(∇ZQ)(X)η(X)−(∇ZS)(Y,ξ )X−(∇ZX)S(Y,ξ )]=R(X ,Y )Z+

1
n−1

[g(Y,Z)QX−S(Y,Z)X ]

(21)

On rearranging we have

R(X ,Y )Z = g(Z,X)Y−g(Z,Y )X+
1

n−1
[(∇ZQ)(X)η(X)−(∇ZS)(Y,ξ )X−(∇ZX)S(Y,ξ )+S(Y,ξ )X ]

(22)

Conversely, retreating the steps,we can show that W7-curvature tensor is irrotational.
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5.3 Conservative W7-curvature tensor in a Para Kenmotsu manifold

W7-curvature tensor is given by

W7(X ,Y )Z = R(X ,Y )Z− 1
n−1

[g(Y,Z)QX−S(Y,Z)X ] (23)

Di�erentiating (35) covariantly with respect to U , we have

(∇UW7)(X ,Y )Z = (∇U R)(X ,Y )Z− 1
n−1

[g(Y,Z)(∇U Q)(X)− (∇U S)(Y,Z)X ] (24)

Contracting equation (24), we obtain

(div W7)(X ,Y )Z = (∇X S)(Y,Z)− (∇Y S)(X ,Z)

+
1

n−1
[g(Y,Z)dr(X)− (∇Y )S(X ,Z)] (25)

(div W7)(X ,Y )Z = (∇X S)(Y,Z)− n
n−1

(∇Y S)(X ,Z)+
1

n−1
g(Y,Z)dr(X) (26)

Suppose that W7(X ,Y )Z is conservative, i.e. (div W7)(X ,Y )Z = 0, then equation (26)
reduces to

(∇X S)(Y,Z)− n
n−1

(∇Y S)(X ,Z) =− 1
n−1

g(Y,Z)dr(X) (27)

Pu�ing X = ξ in (27), we get

(∇ξ S)(Y,Z)− n
n−1

(∇Y S)(ξ ,Z) =− 1
n−1

g(Y,Z)dr(ξ ) (28)

Expanding the first term of (28) we have

(∇ξ S)(Y,Z) = ∇ξ S(Y,Z)−S(∇ξY,Z)−S(Y,∇ξ Z) (29)
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Since ∇ is torsion free i.e. ∇XY −∇Y X = [X ,Y ] and using ∇X ξ = φ 2X = X−η(X)ξ and
(Lξ S)(X ,Y ) = 2S(X ,Y )+2(n−1)η(X)η(Y ) in (29), we obtain

(∇ξ S)(Y,Z) = ∇ξ S(Y,Z)−S([ξ ,Y ]+∇Y ξ ,Z)−S(Y, [ξ ,Z]+∇Zξ )

= ∇ξ S(Y,Z)−S([ξ ,Y ],Z)−S(∇Y ξ ,Z)−S(Y, [ξ ,Z])−S(Y,∇Zξ )

= ∇ξ S(Y,Z)−S([ξ ,Y ],Z)−S(Y, [ξ ,Z])−S(Y −η(Y )ξ ,Z)

−S(Y,Z−η(Z)ξ )

= (Lξ S)(Y,Z)−S(Y,Z)+S(η(Y )ξ ,Z)−S(Y,Z)+S(η(Z)ξ ,Y )

= (Lξ S)(Y,Z)−2S(Y,Z)−2(n−1)η(Y )η(Z)

= 0 (30)

Also, expanding the second term of (28) we have

(∇Y S)(ξ ,Z) = ∇Y S(ξ ,Z)−S(∇Y ξ ,Z)−S(ξ ,∇Y Z) (31)

Using ∇X ξ = φ 2X = X−η(X)ξ and S(X ,ξ ) =−(n−1)η(X) in (31), we get

(∇Y S)(ξ ,Z) = ∇Y [−(n−1)g(ξ ,Z)]−S(Y −η(Y )ξ ,Z)+(n−1)g(ξ ,∇Y Z)

=−(n−1)[g(∇Y ξ ,Z)+g(ξ ,∇Y Z)]−S(Y,Z)+S(η(Y )ξ ,Z)

+(n−1)g(ξ ,∇Y Z)

=−(n−1)g(Y −η(Y )ξ ,Z)−S(Y,Z)− (n−1)g(η(Y )ξ ,Z)

=−(n−1)g(Y,Z)+(n−1)g(η(Y )ξ ,Z)−S(Y,Z)− (n−1)g(η(Y )ξ ,Z)

=−(n−1)g(Y,Z)−S(Y,Z) (32)

Now using equations (30) and (32) in (28), we obtain

n
n−1

[(n−1)g(Y,Z)+S(Y,Z)] =− 1
n−1

g(Y,Z)dr(ξ )

S(Y,Z) =−1
n

g(Y,Z)dr(ξ )− (n−1)g(Y,Z)

S(Y,Z) = [−dr(ξ )
n
− (n−1)]g(Y,Z) (33)

Thus we have the following result.

Theorem 5.3.1. On a Para Kenmotsu manifold Mn
, if the W7(X ,Y )Z curvature tensor of

type (1,3) is conservative then Mn
is Einstein.
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6 Chapter 6

6.1 Conclusion

We have studied some geometric properties of W7-curvature tensor in Para Kenmotsu
manifolds satisfying the conditions

W7(X ,Y )Z = 0,

R(X ,Y )W7(Z,T )V = 0,

∇UW7(X ,Y )Z = 0,

(∇UW ′7)(X ,Y,Z,T ) = B(U)W ′7(X ,Y,Z,T )

and

R(X ,Y )Z = g(Z,X)Y −g(Z,Y )X +
1

n−1
[(∇ZQ)(X)η(X)− (∇ZS)(Y,ξ )X

− (∇ZX)S(Y,ξ )+S(Y,Z)X ] (34)

.

We have shown that a W7-flat P-Kenmotsu manifold is a flat manifold. Its curvature van-
ishes identically everywhere. Also, we have shown that a W7-semisymmetric P-Kenmotsu
manifold is a W7-flat manifold. Therefore a W7-semisymmetric P-Kenmotsu manifold is
neither η-Einstein nor Einsten. Similarly, we have established the necessary condition for
a W7-curvature tensor to be irrotational.
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6.2 Future Research

The W7 curvature tensor is given by

W7(X ,Y,Z,T ) = R(X ,Y,Z,T )+
1

n−1
[g(Y,Z)Ric(X ,T )

−g(X ,T )Ric(Y,Z)] (35)

Expressing equation (35) in index notation we get

W7i jkl = Ri jkl +
1

n−1
[g jkRil−gilR jk] (36)

Contracting equation (36) we obtain

gilWi jkl = gilRi jkl +
1

n−1
[gilg jkRil−gilgilR jk] (37)

Wjk = R jk +
1

n−1
[Rg jk−nR jk] (38)

Wjk =
1

n−1
(R jk +Rg jk) (39)

The contracted version of W7-curvature tensor above does not vanish in an Einstein space.
This shows that we can not extend the Pirani’s formalism of gravitational wave to the
Einstein space with the help of W7i jkl .
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