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Abstract

The goal of this project, is to study the properties of W5-Curvature tensor in LP -Sasakian

manifold and the following theorem are proved.

- A W5 -flat LP-Manifold is a flat manifold.

- A W5 -Semisymmetric LP-Sasakian manifold is said to be W5-flat manifold.

- A W5 -Symmetric and W5 -flat LP-Sasakian manifold is a flat manifold.

-A W5-Recurrent LP-Sasakian manifold with R(X ,Y )W5(Z,U)V = 0 and A(X)g(Y,Z)−
(2− 1

n−1)g(X ,Z)A(Y ) = 0 is a W5-Symmetric space.
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1 Introduction

Riemannian geometry is the branch of differential geometry that studies Riemannian
manifolds, smooth manifolds with a Riemannian metric.

After emergence of Riemannian Geometry, studies of results concerning the geometry
of surfaces and the behaviour of geodesics on the surfaces have been developed.It has
also enhanced the development of algebraic and differential topology, more so, the idea of
smooth manifold admitting Riemannian metric has helped solve the problem of differential
topology.

Though the concept of metric tensor was known to some mathematicians such as Carl
Gauss from the 19th century,Gregio Ricci - Curbastro and Tullio Levi - Civita in the early
20th century understood the properties of the metric tensor.

In 1960, a Japanese, Shigeo Sasaki, started the study of almost contact structures in terms
of certain tensor fields.Later in 1962 what is now called Sasakian manifold first appeared
under the name of normal contact metric structures.In 1965 the term Sasakian structure
and Sasakian manifold were frequently used replacing the original terms.

The study of Sasakianmanifold brings togethermany field inmathematics from differential
and algebraic topology through complex algebraic geometry to Riemannian manifold with
special holonomy.

1.0.1 Notations and Definitions

Definition 1.0.1 Consider an n-dimensional manifold M.If we let ρ be a point on the mani-
fold, then V ρ is the set of all vector field defined at p Therefore, V ρ is also an n-dimensional
space.

Definition 1.0.2 A 1- form vector r⃗ defined at ρ is a linear scalar operator acting on a vector
space V ρ to real number ℜ.
This then means
(1) r⃗ : V ρ −→ ℜ

(2) For any u⃗ , v⃗ ∈ V p and if a,b ∈ ℜ

⇒ r⃗ (a⃗u + b⃗v)=a r⃗(⃗u)+b⃗r(⃗v)
The set of all 1-forms defined at ρ is called a co-vector or a dual space of V ρ , and it is
denoted by V ∗

ρ .This is also an n-dimensional vector space.
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Definition 1.0.3 Any vector u⃗ ∈ Vρ can be associated with a linear scalar operator acting on
1-form u⃗ ∈ Vρ to ℜ.
i.e u⃗ r⃗ ̸= r⃗ u⃗ : V ∗

ρ → ℜ

Definition 1.0.4 An (k,l)- type tensor defined at point ρ is a linear scalar operator with l
slots for 1- form from V ∗

ρ and k slots from Vρ .Such tensor can also be defined as l-times
contravariant and k-times covariant.
The total number of slots, r=l+k, is called the rank of the tensor.
Thus

(1). Any vector is a (1,0) -type tensor.

(2). Any 1-form is a (0,1) -type tensor

Remark

Tensors therefore are a generalization of vectors and 1-form covectors.

A tensor of (k,l) at ρ is a multi-linear map which takes k vectors and l covectors (1-forms)
and gives a real number.

A tensors ( or tensor field) T, of type (k,l) is denoted with k superscripts and l subscripts
(T k

l ) and is said to be of rank k+l.

Definition 1.0.5 Let M be smooth manifold a tangent vector at a point ρ ∈ M is a map Xρ :
C∞ (M)→ ℜ which satisfies .

1.Xρ (f+g)= Xρ (f) + Xρ (g)

2. Xρ = 0 ( for constant map)

3. Xρ (fg) = f(ρ)Xg + g(ρ) Xρ

f ∀ f,g ∈ C∞ (M) on the common domain.

The set of all tangent vectors to an n-dimensional manifold M at a point P∈ M form an
n-dimensional vector space which is called the tangent space, denoted by Tρ M.

Definition 1.0.6 Let M be a smooth manifold , then by a Riemannian metric tensor g on
M, we have a smooth assignments of an inner product to each tangent space of M.This then
means, for each ρ ∈M, gρ : T ρ M × T ρ M→ ℜ is symmetric, positive definite and bi-linear
map.That is, for any smooth vector field X and Y on M.

P 7→ gp (Xρ ,Xρ ) is a smooth function.

It is (2,0)- tensor, g∈ T 2
0 (M).
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In a cordinate system, we may write,

g=g i j dxi ⊗ dx j.

Then the pair (M,g) will be called Riemannian manifold.

Definition 1.0.7 By S and R, where S denote Ricci tensor and R, Riemannian curvature tensor
of an n-dimensional Riemannian manifold (M,g), then S can be defined as

S(X,Y)=
n
∑

i=0
g(R(ei,x)Y,ei)

where e1,e2, , , ,en are orthonormal basis vector fields in TM and X,Y Z∈TM .

Definition 1.0.8 Let M be smooth manifold an Affine Connection (Levi- Civita) ∇ on M is
a differential operator, sending smooth vector fields X and Y to a smooth vector field ∇XY
which then satisfies the following conditions

1.∇X+YZ = ∇XZ + ∇YZ

2.∇X (Y + Z) = ∇XY + ∇XZ

3.∇ f X = f ∇XY

4.∇X (fY) = X(f) + f(∇XY)

∀ vector fields X,Y and Z and real valued function f on M.
The vector field ∇X is known as the covariant derivative of the vector field Y along X
with respect to to ∇.

Definition 1.0.9 A curve γ (s) is a geodesic if its tangent vector γ⃗(s) at each point are parallel.

Definition 1.0.10 A homeomorphism f:X→Y is continous bijection whose inverse f−1: Y→
X is also continous.

Definition 1.0.11 Let M be an n-dimensional contact manifold with contact for η ,that is,
η(dλ )n ̸=0, then, a contact manifold admits a vector field ξ called characteristics vector
such that η(ξ )=1 for any field X∈ χ(M).Further , if M admits a Riemannian metric g and a
tensor field φ of type (1,1) such that,
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φ 2X = X - η(X)ξ

g(X,ξ ) = η(X)

g(X,φY) = dη(X,Y)

The we say that (φ ,η ,ξ ,g) is a contact metric structure.

Definition 1.0.12 A contact metric manifold is said to be sasakian if (∇X φ )Y = g(X,Y)ξ -
η(Y)X.
where

∇xξ = - φX

R(X,Y)ξ = η(Y)X - η(X)Y

For all vectors fields X,Y ∈M.

Definition 1.0.13 An n-dimensional manifold M is said to admit an almost para-contact
Riemannian structure (φ ,η ,ξ ,g) such that

φ 2 X = X - η(X)ξ ,

φξ = 0, η(ξ )=1, η(φX) = 0,

g(X,ξ ) = η(X),

g(φX,φY) = g(X,Y) - η(X)η(Y)

∀ vectors fields X,T on M.

If (φ ,η ,ξ ,g) satisfy the equation

dη = 0, ∇X ξ = φX

(∇X φ ) = -g(X,Y)ξ - η(Y)X + 2η(X)η(Y)ξ

Then M is called Para-sasakian manifold.
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If M admits 1-form η ,such that (∇X η)Y = -g(X,Y) + η(X)η(Y), for all X,Y ∈ M.The para-
sasakian manifold is said to be a special manifold.

Definition 1.0.14 An n-dimensional differentiable manifold Mn is Lorentizian Para-
Sasakianmanifold if it admits a (1,1) tensor field φ , vector field ξ , 1-form η and Lorentizian
metric g which satisfies

φ 2(X) = X + η(X)ξ

φ (ξ ) = 0, η(ξ ) = -1, η(φX) = 0,

g(X,ξ ) = η(X),

g(φX,φY) = g(X,Y) + η(X)η(Y),

(∇X )Y = g(X,Y)ξ + η(Y)X + 2η(X)η(Y)ξ ,

∇X ξ = φX

where X and Y are arbitrary vector fields, ∇X denote covariant differentiation in the direction
of X with respect to g.

Lorentizian Para Sasakian manifold satistify the following relations

φξ = 0 η(φX) = 0

rank φ =n-1

Also an LP-sasakian manifold M is said to be η -Einstein if its Ricci tensor S is of the form

S(X ,Y ) = ag(X ,Y )+bη(X)η(Y )

for any vector fields X,Y where a,b are functions on M.

Further on such an LP- sasakian manifold with (φ ,η ,ξ ,g) structure , the following rela-
tions holds
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g(R(X ,Y )Z,ξ ) = η(R(X ,Y )Z) = η(R(X ,Y )Z) = g(Y,Z)η(X)−g(X ,Z)η(Z)

R(ξ ,X)Y = g(X ,Y )ξ −η(Y )X

R(ξ ,X)ξ = X +η(X)ξ

R(X ,Y )ξ = η(Y )X −η(X)Y

R(X ,Y )ξ = (n−1)η(X)

S(φX ,φY ) = S(X ,Y )+(n−1)η(X)η(Y )

for any vector fields X,Y and Z where R(X,Y)Z is the Riemannian curvature tensor.

Definition 1.0.15 The projective curvature tensor P on LP Sasakian manifold M of
dimensional N is defined as
P(X ,Y )Z = R(X ,Y )Z − 1

n−1 [g(Y,Z)QX −g(X ,Z)QY ]

for all vectors fields X,Y,Z on M where Q is the Ricci operator defined by

S(X,Y)=g(QX,Y)

The manifold is said to be projectively flat if P vanishes identically on M.

Definition 1.0.16 The Weyl projective curvature P of type (1,3) on LP-sasakian manifold M
of dimensional n is defined by

P(X ,Y )Z = R(X ,Y )Z − 1
n−1 [S(Y,Z)X −S(X ,Z)Y ]

for all vectors X,Y,Z on M.
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2 Chapter 2

2.1 Preliminaries.

In this chapter, we will be discussing in summary some concepts that we will majorly
apply in this dissertion.Specifically, we are going to define tensor, we will discuss mani-
folds,connections ,sasakian manifolds and complex manifolds .

2.1.1 Differentiable manifolds

An non-empty paracompact Hausdorf space M is said to be an n-dimensional topological
manifold,if every point x∈M has an open neighbour u in M, that is homeomorphic to an
open subspace of the n-dimensional euclidean space ℜn.

Definition 2.1.1 A chart on M is an embedding φ : u → ℜn of an open subspace u of M into
ℜn such that φ (u) is an open subspace of ℜn.

Let pi(t1,t2,......,tn) = ti ∀ t ∈ ℜ n, then for every chart φ : u→ ℜn, the composition φ i =
pi◦φ : u→ ℜ is called the ith cordinate of the point x∈ U with respect to φ .

The chart φ : u → ℜn is called the local co-ordinate system in u∀x ∈U and the n real
numbers (t1, t2, ...., tn) = (φ1(x),φ2(x), ..,φn(x)) are said to be the co-ordinates of the point
x with respect to φ .

A function f: W→ ℜ defined on a non-empty space W of ℜn is said to be of class

1. Co iff it is continous

2. Ck, k=1,2,... iff it has continous partial derivatives of all orders r ≤ k.

3. C∞ or smooth if it is of class Ck for every positive integer k.

4. Cω if it is an analytic function.

Definition 2.1.2 An atlas of class Ck is a collection α of charts on M, such that the domains
of all the charts in α cover the n-manifold M, that is

⋃
φ∈α

Domain = M and for any two charts

φ : U → ℜ and ψ : W → ℜn with U∩W not empty, function f (φ ,ψ) (t) = ψ(φ−1(t)) is of
class Ck.
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The function f(φ ,ψ) is the connecting function of the two charts φ and ψ and ∀ x ∈ U ∩
W, we have f(φ ,ψ)(φ (x)) = ψ(x).Hence f(φ ,ψ) is called the transformation for the change
of local co-ordinates system from φ to ψ .

Let Ck(M) be set of all atlases on M of class Ck.If k̸= 0, this set Ck(M) may be empty.The
relation∼ on M, defined by α ∼ β iff α ∪β is an atlas in Ck(M) for any two atlases α and
β in Ck (M), is an equivalence relation in Ck (M) partitioning it into disjoint equivalence
classes. Each of these equivalance classes is called a differentiable structure.
Two atlases are said to be compatible if their union is an atlas.

Definition 2.1.3 An n-manifold M together with a given differentiable structure σ of class
Ck on M, is called a differentiable n-manifold.

Let X and Y be differentiable m and n manifolds respectively of class Ck with differentiable
structures ξ and η where k = 0,1, .....,∞.An arbitrary function f : X → Y is said to be
differentiable of class Ch, h ≤ k if for every chart φ : U → ℜm in the maximal atlas of
ξ and every chart ψ : W → ℜn with A = U∩ f−1(W) ̸= /0, the function f(φ ,ψ): φ (A) → ℜn

defined by f(φ ,ψ)(t) = ψ (fφ−1 (t)) ∀ t ∈φ (A) where φ (A) is an open subspace of ℜm is of
class Ch.

A differentiable curve of class Ck in M is differentiable mapping of class Ck of a closed
interval [a,b] of ℜ into M, which is essentially the restriction of a differentiable function
of class Ck of an open interval containing [a,b] into M.

2.1.2 Manifold

A (real) n-dimensional manifold is a topological space M for which every point x ∈ M has a
neighbourhood homeomorphism to Euclidean space ℜn.

Definition 2.2.1 Let M be a topological space and U ⊆ M an open set. Let V ⊆ ℜn be open.
A homeomorphism φ : U→V, φ (u) = (x1(u),...,xn(u)) is called a cordinate system on U, and
the function x1,.....,xn the cordinate function.

The pair (U,φ ) is called a chart on M. Also the inverse map φ−1 is a parametization of U.

Definition 2.2.2 An atlas on M is a collection of charts (Uα ,φα ) such that Uα covers M.
The homeomorphism φβ φ−1

α : φα (Uα∩Uβ ) → φβ (Uα∩Uβ ) are the transformation maps
or cordinate transformation.

Definition 2.2.3 Let X be a non-empty set. A collection τ of subsets of X is called a topology
on X. We call the pair (X,τ) a topological space. Often, we denote the topological space of X
instead of (X,τ).
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Definition 2.2.4 A mapping f : X →Y between two topological spaces is called continous if
for every U ⊆ Y open in Y the inverse image f−1(u) is open in X. We also say that f is a map.

Definition 2.2.5 A topological space X is said to be Hausdorff if for any two distinct points
x,y ∈ X (x ̸= y) there exists two disjoint open subset u,v (u ∩ v = /0) such that x ∈ U and y ∈ V.
This is an example of a separation axiom since one thinks of the U , V as "separating" the
points x and y.

Definition 2.2.6 Let M be a topological Haudorff space with a countable basis M is called
a topological manifold if there exists an n ∈ N (natural number) and for every point p∈M
an open neighbourhood Up of p which is homeomorphic to some open subset Vp ∈ ℜn.The
integer n is called the dimension of M and we write Mn to denote that M has dimension n.

Definition 2.2.7: Let M be a topological manifold. A open cover M is a collection of open
(subsets) U ⊂ M whose union is M.
i.e M =

⋃
φ∈I

Uα

A chart of M is a pair (U,φ ) such that U ⊂ M is an open set in M and φ is a homeomorphism
from U onto an open set in ℜn i.e φ : U → ℜn

An atlas for M mean a collection of charts {Uα ,Uα | α ∈ I} such that {Uα |α∈ I} is an open
cover of M.

Definition 2.2.8 A manifold M is called a differential manifold of classCk if there is an atlas
of M {Uα ,φα | α ∈ I } such that, for any α,β ∈ I, the composites

φβ ◦ φ−1
α : φβ (uα ∩ uβ )→ ℜn

is differentiable of class Ck.
The atlas {(uα , φβ ) | α ∈ I} is called a differential atlas of class Ck on M. If instead, the
atlas is of classC∞, then M is said to have a differentiable ( smooth) structure and is called
smooth (differential) manifold.

Definition 2.2.9 Let M and N be two smooth manifolds. A smooth map f : M → N is called
a diffeomorphism if f is one - to - and onto and if smooth inverse f−1 : N → M exists.

2.1.3 Sub - manifolds.

Definition 2.3.1 A sub - manifold M is a subset S which itself has the structure of a manifold,
and for which the inclusion map S → M satisfies certain properties such that connection
properties.
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2.1.4 Charts and Atlases

Let X be a topological space.A smooth n-dimensional atlas on X is a collection {(Uα ,φα)},
where Uα are an open cover of X and

φα : Uα →Vα

where Vα ⊂ ℜn are open, such that φα ◦ φ
−1
β

is C∞ where defined ( i.e on φβ (uβ ∩ uα)

).Each (uα ,φα) is known as a chart.

Let X be a topological space and {(uα ,φα)} a smooth atlas.Let (u,φ) be such that u ⊂ X
is open, φ : U → V ⊂ ℜn a homeomorphism such that φ ◦φ−1

α ,φα ◦φ−1 are C∞ where
defined then {(uα ,φα)}∪{(u,φ)} is again an atlas.

Definition 2.4.1 Let u ⊂ ℜn be an open set.Then , a Riemannian metric on u is aC∞ function
g : u → Mn×n (where the matrix represents an inner product on that space) such that

· g(x) is a symmetric non-degenerate matrix,

· g(x) is positive definite.

Example
1.Set g(x):= In×n for all x.This is the standard Riemannian metric on ℜn

Definition 2.4.2 A C∞ map f : u → ℜm is an immersion if d fx is injective for all x ∈U .The
induced Riemannian metric is denoted f ∗h and is given by
f ∗hx(u,v) = h(d fx(u),d fx(v))

Definition 2.4.3 A topological space X is locally Euclidean if or all x ∈ X , there exists d ≥ 0,
d ∈ Z , an open set u ⊂ ℜd and homeomorphism f : u → x.

Definition 2.4.5 A topological space X is second countable if X admits a countable basis of
open sets.

Definition 2.4.6 A basis for a topological space X is a collection of sbsets Vα so that
(i) x = uαvα

(ii) For every α,β , one can cover vα

⋂
vβ = uγvγ

REMARK

If X a topological manifold, every connected component is of X will be a locally Euclidean,
Hausdorff,second countable space.So one can define a topological manifold to be some-
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thing satisfying these three properties.

Definition 2.4.7 A space X is paracompact if every open covers admit a locally finite refine-
ment.

2.1.5 Compatible charts

Suppose (u,φ : u → ℜn) and (v,ψ : v → ℜn are two charts of a topological manifold.Since
u
⋂

v is open in U and φ : u → ℜn is a homeomorphism onto an open subset of ℜn, the
image φ(u

⋂
v) will also be an open subset of ℜn. Similarly ,ψ(u

⋂
v) is an open subset of

ℜn.

Definition 2.5.1 Two charts (u,φ : u → ℜn), (v,ψ : v → ℜn) of a topological manifold are
C∞ compatible if the two maps

φ : ψ−1 : ψ(u
⋂

v)→ φ(u
⋂

v), ψ ◦φ−1: φ(u
⋂

v)→ ψ(u
⋂

v) are C∞.

These two maps are called the transition function between the charts. If u
⋂

v) is empty,
then the two charts are automatically C∞

Definition 2.5.2 Two charts (u,x) and (v,y) of a topological manifolds are called flower
compatible if either
(i) u

⋂
v =φ

(ii) u
⋂

v ̸= φ

2.1.6 Connection.

Let M be aC∞ manifold.A connection, infinitesimal connection or covariant differentiation
on M is an operator ∇ that assigns to each pair of C∞ vector fields X, Y with domain A a
C∞ field ∇XY with domain A. If Z is a C∞ field on A while f is a C∞ real valued function on
A, then ∇ satisfies the following properties
1. ∇X ( Y + Z ) = ∇X Y + ∇X Z.

2. ∇X+Y [Z] = ∇XZ + ∇YZ.

3. ∇ f X [Y] = f∇XY.

4. ∇X (fY) = (Xf) Y + f ∇XY
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2.1.7 Linear connections

A linear connection on M is a connection on TM i.e a map
∇ : τ(M)× τ(M)→ τ(M) satisfying the properties of connection

Lemma 2.6.1 Let ∇ be a linear connection, and let X ,Y ∈ τ(M) be expressed in terms of a
local frame by X = X iEi,Y = Y jE j. Then
∇XY = (XY k +X iY jΓk

i j)Ek

Proof
Using the defining rules for connection we have

∇XY = ∇X(Y jE j)

∇XY = (XY j)E j +Y j∇X iEi
E j

∇XY = (XY j)E j +X iY j∇EiE j

∇XY = XY jE j +X iY jΓk
i jEk

Renaming the dummy index in the first term yields
∇XY = (XY k +X iY jΓk

i j)Ek

2.1.8 Riemannian manifold

Let Tp be the tangent space at the point p of a differentiable manifold M.If we single a
real valued bilinear, symmetric and positive definite function g on the ordered pairs of
tangent vectors at each point p in M, then M is called Riemannian manifold and g is
called the metric tensor of M.Thus, for two vectors X,Y in Tp, we have

1. g(X,Y) ∈ ℜ

2. g(X,Y) = g(Y,X)

3. g(aX + bY, Z) = ag (X,Z) + bg (Y,Z)

4. g(X,X) > 0

5. If X and Y are C∞ fields with domain A, then g(X,Y) is a C∞ function on A.
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2.1.9 A Contact Metric Manifold.

Definition 2.9.1 Let (M,φ ,ξ ,η ,,g) be an n = (2m +1) - dimensional almost contact metric
manifold consisting of a (1,1) tensor φ , a vector field ξ , a 1-form η and a Riemannian metric
g.

Let χ(M) be the lie algebra of vector in M. Then consider X,Y,Z,V,W ∈ (M). If Mnis a k-contact
Riemannian manifold, then

∇X ξ = −αφX + β ( X - η(X)ξ ), ∇X ξ = - φX

( ∇X η )Y = - g (φ ,X,Y)

S(X,ξ ) = (n - 1)ηX

η(R(X,Y) Z ) = g (Y,Z)η(X) - g(X,Z)η(Y)

2.1.10 Tensors

Let M be an n-dimensional smooth manifold, a tensor of type (r,s) at p is an (r+ s) linear
valued function on (Tp)r⊗(Tp)s and the vector space of this product is denoted by T r

ρs

Let V be a fixed vector space over a field F, then Tr = V ⊗⊗.....⊗V ( r times tensor product)
is called the contravariant tensor space of degree r. Similarly Ts = V∗ ⊗ V∗⊗...⊗V∗ (s
times tensor product) is called the covariant tensor space of degree s). By convection
T 1 = V, T1 = V ∗ and T 0 = T0 = Γ.

A mixed tensor space of type (r,s) or a tensor space of contravariant degree r and covariant
degree s is the tensor product Tr⊗ Ts = V⊗V⊗...⊗V∗⊗V⊗...⊗V∗.

An element of T r
s is called the a tensor of type (r,s) or tensor of contravariant degree r

and covariant degree s.

Let Tp (M) be the tangent space to a manifold M at ρ and T r
s is called a tensor of type

(r,s) on a subset N and M, is an assignment of tensor Kx∈T s
r (X) to each point x of N.

Definition 2.10.1 The number of indices of tensor components reveal all the general infor-
mation about tensor as operators.For example, if a tensor T has components T ik

jl

This then tells us that
1. T is a 4th.
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2. T is -(2 2) type tensor.

3. Its 1st and 3rd slots are for 1-form whereas the 2rd and 4th slots are for vectors.

2.1.11 Spaces of N dimensions

In three dimensional space a point is a set o three numbers, called cordinates, deter-
mined by specifying a particular cordinate system or frame of reference.For example
(x,y,z),(ρ,φ ,z),(r,θ ,φ) are cordinates of a point in rectangular, cylindrical and spherical
cordinate system respectively.A point N dimensional space is by analogy a set of N number
denoted by (x1,x2, ....,xN) where 1,2,....,N are taken not as exponents but as superscripts.

2.1.12 Coordinate transformations

Let (x1,x2, ......,xN) and (x1,x2, ......,xN) be cordinates of a point in two different frames o
references.Suppose there exists N independent relations between the cordinates of the
two systems having the form
xk = xk(x1,x2, ......,xN)

where it is supposed that the functions involved are single valued,continous and have
contionous derivatives.Then conversely to each set of (x1,x2, ......,xN) there will correspond
a unique set (x1,x2, ......,xN) given by
xk = xk(x1,x2, ......,xN) ,k=1,2,....., N

The relations above define a transformation of co-ordinates from one frame to another.

2.1.13 Summation Convection

In writing an expression such as a1x1 +a2x2 + ....+anxn we can use the short notation
n
∑
j=0

a jx j.An even shorter notation is simply to write it as a jx j, where we adopt the con-

venction that whenever an index is repeated in a given term we are to sum over that index
from 1 to n unless otherwise specified.This is called summation convection.

Clearly, instead of using yje index j we could have used another letter say p, and the sum
could be written apxp.Any index which is repeated in a given term, so that the summation
convection applies is called dummy index or umbral index

2.1.14 Properties of tensors

(i) Outer product
The outer product of two tensor of two tensor is equal to tensor whose rank is the sum of rank
of given tensor and it also involve multiplication of components of the tensor.
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(ii) Contraction
If we set one covariant index of tensor equal to one contravariant index then the resulting
tensor will be of rank two less than original tensor.This process is called contraction.

(iii) Inner multiplication
The outer multiplication of two tensors followed by contraction will result to a tensor known
as inner product of given tensor.

(iv) Addition and substraction of tensor of same rank and type result in tensor of same rank
and type.

N/B - Two operation are defined only for tensor of same rank and type.
For us to verify whether functions would form components of tensor, we can use transfor-
mation laws of which they can be cumbersome of instead we can use the quotient law
which is more convenient.

2.1.15 Quotient Law

If an inner product of any quantity x with arbitrary tensor is also a tensor then X is also a
tensor.
A tensor Q of type (r,0) is said to be symmetric in hth and kth place if Sh,k(Q)= Q and
skew symmetric if Sh,k(Q)= -Q where 1 ≤ h < k ≤ r and Sh,k is a linear mapping which
interchanges vector at hth and kth places.
Note it is also applies to a tensor of type (0,1).

2.1.16 Curvature tensor.

Definition 2.16.1 Consider a connexion ∇ then the operator RXY defined by RXY = [∇X ,∇Y ]

- ∇X ,Y is called the curvature operator.
Then curvature R of the connexion ∇ is defined by

R(X,Y,Z) = RXYZ
which can be written as
R(X,Y,Z) = [∇X ,∇Y ]Z - ∇X ,YZ
= ∇X ∇YZ - ∇Y ∇XZ - ∇X ,YZ
The curvature tensor R satisfy two identities

(i) R(X,Y,Z) + R(Y,X,Z) + R(Z.X,Y) = 0 and
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(ii) (∇X R)(Y,Z,W) + (∇Y R)(Z,X,W) + (∇ZR)(X,Y,W) = 0
which are the Bianchi first and second identities respectively.

Properties of Riemannian curvature tensor

Definition 2.10.2 Let (M,g) be Riemannian manifold with Levi-Civita connection ∇. The Rie-
mannian curvature R is a correspondence that associates to X ,Y ∈ Γ(TM) a map R(X,Y).Γ(TM)
→Γ(TM)defined by
R(X,Y)Z = ∇Y ∇XZ - ∇X ∇YZ + ∇[X ,Y ]Z.

The Riemannian curvature tensor is a linear over the ring of smooth function are coefficient
on the right hand side and satisfy the following properties

(i) R(X,Y)Z = -R(Y,X)Z and if f is smooth function then

(ii)R(fX,Y)Z = -fR(Y,X)Z where ∇ is Riemannian connexion.

Let us define
′
R(X ,Y,Z,W ) = g(R(X,Y,Z)W) then

′
R skew symmetric in the two slots and

the last two slots.The Riemannian curvature tensor R satisfy Binanchi’s first identity and
Bianchi’s second identity.

2.1.17 Conformal curvature tensor

The tensor V defined by

V(X,Y,Z)= K(X,Y,Z) + 1
n−2[Ric(Y,Z)X - Ric(X,Z)-g(X,Z)RY + g(Y,Z)RX] + r

(n−1)(n−2)[g(Y,Z)X -
g(X,Z)Y]

is same for manifolds in conformal correspondence.This tensor is called conformal cur-
vature tensor.

A manifold whose conformal tensor vanishes at every point is said to be conformally - flat.
Aconformal curvature V satisfies Bianchi’s first identity.
V(X,Y,Z)+ V(Y,Z,X) + V(Z,X,Y) =0

2.1.18 Concircular curvature tensor

The concircular curvature tensor is defined by
C(X,Y,Z) = K(X,Y,Z) - r

n(n−1)[g(Y,Z)X-g(X,Z)Y]
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2.1.19 Conharmonic curvature tensor

The conharmonic curvature tensor is defined by
L(X,Y,Z) = K(X,Y,Z)- 1

n−2[Ric(Y,Z)X - Ric(X,Z)Y + g(Y,Z)RX

2.1.20 The Weyl Projective curvature tensor

This is defined by
W(X,Y,Z) = R(X,Y,Z) + 1

n+1[L(X,Y) - L(Y,X)]Z + n
n2−1[L(X,Y)Y - L(Y,Z)Y] + 1

n2−1[L(Z,X)Y -

L(Z,Y)X]
It can be shown that symmetric connexion which are projectively related have the same
curvature tensor.
The Weyl’s projective curvature tensor W satisfies the following properties
(i) W(X,Y,Z) = -W(X,Y,Z)

(ii) (tr W)(X,Y) = (C
′
3W )(X,Y) = 0

(iii)W(X,Y,Z) + W(Y,Z,X) + W(Z,X,Y) = 0

In Riemannian manifold the Weyl projective tensor reduces to

W(X,Y,Z) = R(X,Y,Z) - 1
n−1[Ric(X,Z)Y - Ric(Y,Z)X]

2.1.21 Lie brackets

Vector field can be thought of a derivations on functions.For two vectors X and Y it may
not always be true that X(Y(f)) = Y (X(f)) for all f.This leads to the definition of the Lie
brackets or commutators of two vector fields.

Definition 2.21.1: Let X and Y be vector fields on space M.We define the Lie bracket (at
times known as The Jacobi-Lie bracket, or commutator ) [X,Y] to be operator.
[X ,Y ] = XY −Y X

As it turns out, the bracket of two vector fields is again a vector field is again a vector
field, meaning it is a first order differential operator. In components, letting

X = X i ∂

∂X i and Y = Y j ∂

∂X j

[X ,Y ] = X i ∂Y j

∂X i - Y i ∂X j

∂X i
∂

∂X j

=X(Y j) ∂

∂X j - Y (X j) ∂

∂X j
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= XY - Y X

Thus [X ,Y ] is the vector field.

2.1.22 Lie brackets and covariant derivatives

Let X,Y,Z be C∞ vector field on Mn.Then Lie brackets is mapping
[]: Mn × Mn → Mn such that
[X ,Y ] = X(Yf) - Y(Xf) f being C∞ function.
This satisfies the following properties

(i) [X,Y] ( f1 + f2) = [X,Y]f1 + [X,Y]f2

(ii)[X,Y](f1 f2)= f1[X,Y] f2 + f2[X,Y] f1

(iii)[X,Y] + [Y,X] = 0

(iv) [X+Y ,Z] = [X,Z] + [Y,Z]

(iv) [ f1X, f2Y] = f1 f2[X,Y + f1(X , f2Y - f2(Y f1)X and further it satisfy identity i.e
[X , [Y,Z]]+ [Y, [Z,X ]]+ [Z, [X ,Y ]] = 0

The covariant derivative△ is amapping△: T r
s →T r

s+1 such that△p(a1, .........,ar,x1, ........,xs+1)
=△s+1 p(a1, ....,ar,x1, ....,xs) where
p ∈ T r

s : a1, ......ar ∈ T(P) and x1, ......,xs ∈ T ∗
(P)

2.1.23 Lie brackets and Exterior Derivatives

Let X be C∞ vector field on an open set.A Lie derivative via X is a type preserving mapping
Lx : T r

s → T r
s such that

(i)Lxf→ xf, where f is C∞

(ii) Lxa = 0, a ∈ ℜ

LxY = [X,Y], Y ∈ T(P)
(LxA)(Y) = X(A(Y)) - A([X,Y])
where A∈ T ∗

p and (Lxp)(A1, .....,Ar,x1, ......,xs) = X(p(A1, .......,Xs)....p(A1, ......., [X ,Xs])
where p ∈ T r

s . Let Vρ be C∞ ρ form an open set A.Then the mapping

d : Vρ →Vρ+1 by
(d f )(X) = Xf where X ∈ Tρ and f is C∞ function on A thus from above its clear now we
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can define the following as
(dA) (x1, ......,xp+1) = x1(A(x2, .....,xp+1)) + x2(A(x1,x3, ....,xp+1)) +,....,+xp+1(A(x1,x2, ......,xp))

- A([x1,x2]x3,....,xp+1) - A([x1,x3]x2x4, ....,xp+1) - A([x2,x3]x1,x4, .....,xp+1).....for all arbi-
trary C∞ field X ∈V and A ∈Vp is called exterior derivatives.

2.1.24 Lie Algebra

Let M be the set of all infinity vector field on A the btackets [] is defined by mapping
[]: M×M →M such that for x,y in M,
and
[x,y] f = xyf - yxf
where f is smooth function for x,y,z in M
we have
(i) X ,Y ] = -[Y,X ] skew commutative (symmetric)

(ii) [X +Y,Z] = [X ,Z] + [Y,Z]

(iii) [ f X ,gY ] = fg[X ,Y ] + f(XgY) - g(Yf)X

(iv) [[X ,Y ],Z]+ [[Y,Z],X ]+ [[Z,X ],Y ] = 0
The last equation is known as Jacobs Identity.

2.1.25 Riemannian Connection

Definition 2.25.1 A connection ∇ is said to be Riemannian if

1. ∇ is symmetric or torsion free that is ∇XY - ∇Y X = [X ,Y ].

2. g is covariant constant with respect to ∇ or ∇Xg=0.

Definition 2.25.2 The torsion tensor of a connexion ∇ is a vector valued bilinear function
T which assigns to each pair of C∞ fields X,Y with domain A, a C∞ vector field T(X,Y) with
domain A defined by

T(X,Y) = ∇XY - ∇Y X - [X ,Y ]

If T(X,Y) = 0, then the connexion ∇ is said to be torsion free or symmetric.

2.1.26 An Affine Connection
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Definition 2.26.1 Let M be smooth manifolds.An affine connection (Levi-Civita) connection
∇ onM is a differential operator,sending smooth vector field∇XY , which satisfies the following
conditions

1.∇X+Y Z = ∇X Z + ∇YZ , ∇X (X + Y)= ∇XY + ∇X Z

2.∇ f XY = f ∇XY, ∇X (fY) = X(f)Y + f(∇XY)
for all smooth vector fields X,Y and Z and real valued function f on M.

A vector field ∇XY is known as the covariant derivative of the vector field Y along X (with
respect to the affine connection ∇).

2.1.27 Complex manifolds

Smooth manifold is a space in which some neighbourhood of every point is homeomorphic
to an open subset of ℜn such that the transitions between those open sets are given by
smooth functions.

Complex manifolds is a space in which some neighbourhood of every point is homeomor-
phic to an open subset of Cn such that the transitions between those open sets are given
by holomorphic fuctions.

The study of complex manifolds has two different subfields

(1). Function theory concerned with properties of holomorphic functions on open subsets
D ⊆Cn.

(2). Geometry: concerned with global properties (for instance compact) complex manifolds.

2.1.28 Holomorphic functions

Definition 2.28.1 Let D be an open subset of Cn, and let f : D →C be a complex valued
function on D. Then f is holomorphic in D if each point a ∈ D has an open neighbourhood U,
such that th function f can be expanded into a power series

f(z) =
∞

∑
k1,...kn=0

ck1, ...,ckn(z1 −a1)
k1 .....(zn −an)

kn

which converges for all z ∈U .

We denote the set of all holomorphic functions on D by the symbol ϑ(D)

More generally, we say that a mapping f : D → E between open sets D ⊆Cn and E ⊆Cn

is holomorphic if its m coordinate functions f1, ...., fm : D →C are holomorphic functions
on D.
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Definition 2.28.2 A geometric structure ϑ on the topological space X is a collection of sub-
rings ϑ(U)⊆C(U), where U runs over the open sets in X, subject to the following conditions

1. The constant functions are in ϑ(U).

2. If f ∈ ϑ(U) and V ⊆U then f |v ∈ ϑ(v)

3. If fi ∈ ϑ(Ui) is a collection of functions satisfying fi|Ui ∩U j = f j|Ui ∩U j for all i, j ∈ I
then there is a unique f ∈ ϑ(U) such that fi = f |Ui, where U =Ui∈IUi

The pair (X ,ϑ) is called a geometric space functions in ϑ(U) is sometimes called distin-
guished.

Definition 2.28.3 A morphism f : (X ,ϑX)→ (Y,ϑY ) of geometric spaces is a continous map
f : X → Y with the following additional property , whenever C ⊆ Y is open , and g ∈ ϑY (U),
the composition g◦ f belongd to ϑX( f−1(U)).

Definition 2.28.4 A complex manifold is ageometric space (X ,ϑX) in the every point has
an open neighbourhood U ⊆ X , such that (U,ϑX |U)≃ (D,ϑ) for some open subset D ⊆Cn

and some n ∈ N.

2.1.29 Complex submanifolds

Let (X ,ϑX) be a geometric space and z ⊆ X any subset.There is a natural way to make
z into a geometric space. First, we give z the induced topology. We call a continous
function f : V →C on an open subset V ∈ z distunguished if every point a ∈ Z admits an
open neighbourhood Ua in X, such that there exists fa ∈ ϑx(Ua) with the property that
f (z) = fa(z) for every z ∈V ∩Ua.

Definition 2.29.1 A subset Z of a complex manifold (X ,ϑX) is called smooth if, for every
point a ∈ Z, there exists a chart φ : U → D ⊆Cn such that φ(U ∩Z) is the intersection of D
with linear subspace of Cn

2.1.30 A sasakian manifold

Definition 2.30.1 Let (M,φ ,ξ ,η ,g) be an n = (2m + 1)- dimensional almost contact metric
manifold consisting of a (1,1) tensor φ , a vector field ξ , a 1-form η and a Riemannian metric
g.

Let κ(M) be the lie algebra of vector in M. Now considering X,Y,Z,V,W ∈ (M), we have

φ 2 = -1 + η(X) ξ , η(ξ ) = 1, η◦φ = 0,φ∈ = 0



22

g(X,ξ ) = g(X,Y) - η(X)η(Y)

g(X,ξ ) = η(X)

(Xφ )Y = g(X,Y) ξ - η(Y)X

(Xξ ) = - φX

Thus, M is sasakian manifold
Also
R(X,Y)Z = g(Y,Z)X - g(X,Z)Y
R(X,Y)ξ = η(Y)X - η(X)Y

R(ξ ,X)Y = g(X,Y)ξ - η(Y)X

R(.)ξ = η(X)ξ - X

S(X,ξ ) = (η - 1)η(X)

φξ = (η - 1) ξ

2.2 Statement of the problem

The aim of this study is to investigate W5 Curvature tensor on LP-Sasakian manifold.The
motivation is to generate new ideas with emphasis on producing new geometric results
having physical meaning.

2.3 Objectives

The project aims to give a detailed study on the properties of W5 curvature tensor on the
LP-Sasakian manifold.
The study focuses on generating new ideas and emphasizing new geometric results.We
also investigate the basic propeties of various LP-Sasakian spaces and investigate the
results obtained and use them to put forward some new ideas.
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3 Literature Review

Differential geometry builds on the following disciplines as its prerequisites: the anaytic
geometry of Descartes and Calculus(Leibniz 1646 - 1716), Newton 1645 - 1727).

Mishra (1969)studied some properties of the Riemannian curvature tensor as well as the
Weyl projective curvature tensor and conharmonic curvature tensor in Sasakian manifold.
He showed that a concircular symmetric Sasakian manifold is a manifold of constant
curvature and that the concirclar and Riemannian curvature tensor do not vanish in a
Sasakian manifold.

Pokhariyal and Mishra and also Pokhariyal (1979), defined Weyl tensor to define the rela-
tivistic significance of curvature tensor. The Weyl’s projective curvature tensor was then
defined on the basis of geodesic correspondence due to a particular type of distribution of
vector field found in it.This tensor was then given by the equation

W (X ,Y,X ,T ) = R(X ,Y,Z,T )+
1

n−1
[g(X ,Y )Ric(Y,T )−g(X ,T )Ric(Y,Z)] (3.0.1)

The relativistic signicance of Weyl’s projective curvature tensor was also studied by Singh
et al,(1965).

De U.C (1976) studied projective curvature tensor on k-contact and proved that a projec-
tively semisymmetric flat k-contact is a sasakian manifold.

De U.C and De A (2011) proved that a projectively pseudosymmetric k-contact manifold
and pseudoprojectively flat k-manifold are sasakian manifold respectively.

The notion if a Lorentzian Para Sasakianmanifoldwas introduced byMatsumoto K(1989).Muhai
I and Risca R. (1992) defined the same notion independently and they obtained several
results on this manifold.Also LP-Sasakian manifold equipped with projective curvature
tensor were studied by Teleshian A. and Asghari N.(2011).

De U.C,Jae B and Abul K. (2008) have studied quasi-coformally semi-symmetric Sasakian
manifolds and proved that a Sasakian manifold is quasi -cinformally flat if and only if it is
locally isometric with the unit sphere Sn(1)

Pokhariyal and Mishra (1970) have introduced new tensor field, called W2 -Curvature
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tensor as
W2(X ,Y )Z = R(X ,Y )Z + 1

n−1 [g(X ,Z)QY −g(Y,Z)QX ]

in a Riemannian manifold and studied their properties .Further , Pokhariyal (1982) studied
some properties of these tensor field in Sasakian manifold.

Matsumoto ,Ianus and Mihai (1986) have studied P-Sasakian manifold admitting W2 and
E-tensor field.

Pokhariyal (2001) studied W2 -Curvature tensor , its associated symmetric and skew-
symmetric tensor in an Einstein Sasakian manifold.

Pokhariyal G.P(1982) gave a new curvature tensor known as W5 -Curvature tensor as
W (X ,Y )Z = R(X ,Y )Z + 1

n−1g(X ,Z)QY −S(X ,Z)Y

A k-contact manifold is always a contact metric manifold,but the converse is not true in
general.Pradip M and De U.C (2013)studied on concircular curvature tensor on k-contact
manifold established that a (2n−1) - dimensional φ - concircularly flat k-contact manifold
(n ≥1) is Einstein manifold of scalar curvature equal to 2n(2n+1). In the same study,they
proved that, a concircularly semisymmetric k-contact manifold of dimension (2n+1) ,
n ≥ 1 is a Sasakian manifold.

Khan(2006) studied Einstein Projective Sasakian manifold.He showed that a projectively
flat a projectively flat Sasakian manifold is an Einstein manifold and is of constant curva-
ture.He also showed that if an Einstein Sasakian manifold is projectively flat, then it is
locally isometric with the unit sphere Sn(1).

Prakasha D.G Vasant C, and Kakasals M(2016) established taht a φ −W5-flat generalized
Sasakian space-form is conformally flat and that it is φ −W5-semi-symmetric if and only
if it is W5 flat

Dwivedi M. and Kim J.(2011) studied on coharmonic curvature tensor in k-contact and
Sasakian manifolds.They showed that a quasi - coharmonically flat k-contact manifold of
dimension (2n+1) has a vanishing scalar curvature.
They established that (2n+1) -dimensional quasi-projectively flat k-contact is an Eistein
manifold while a quasi-coharmonically flat Sasakian manifold was shown to be η- Einstein
though.

In 1970 Pokhariyal and Mishra defined some of the tensors which included

W1(X ,Y,Z,T ) = R(X ,Y,Z,T )+
1

n−1
[g(X ,T )Ric(Y,Z)−g(Y,T )Ric(X ,Z)] (3.0.2)
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W2(X ,Y,Z,T ) = R(X ,Y,Z,T )+
1

n−1
[g(X ,Z)Ric(Y,T )−g(Y,Z)Ric(X ,T )] (3.0.3)

W3(X ,Y,Z,T ) = R(X ,Y,Z,T )+
1

n−1
[g(Y,Z)Ric(X ,T )−g(Y,T )Ric(X ,Z)] (3.0.4)

W4(X ,Y,Z,T ) = R(X ,Y,Z,T )+
1

n−1
[g(X ,Z)Ric(Y,T )−g(X ,Y )Ric(Z,T )] (3.0.5)

W5(X ,Y,Z,T ) = R(X ,Y,Z,T )+
1

n−1
[g(X ,Z)Ric(Y,T )−g(Y,T )Ric(X ,Z)] (3.0.6)

W6(X ,Y )Z = R(X ,Y )Z +
1

n−1
[g(X ,Z)Y −S(X ,Y )X ] (3.0.7)

Later, Pokhariyal G.P defined new tensor field W ∗ on a Riemannian manifold as

W ∗(X ,Y,Z,U) =
′
R(X ,Y,Z,U)− 1

2(n−1)
[S(Y,Z)g(X ,U)−S(X ,Z)g(Y,U)] (3.0.8)

where
W ∗(X ,Y,Z,U) = g(W ∗(X ,Y )Z,U)

Pokhariyal (1982) gave the definition of W5,W7,W8,W9 curvature tensor, where he gave its
definition as

W5(X ,Y,)Z = R(X ,Y )Z +
1

n−1
[g(X ,Z)φY −S(X ,Z)Y ] (3.0.9)

W7(X ,Y,Z,T ) = R(X ,Y,Z,T )+
1

n−1
[g(Y,Z)Ric(X ,T )−g(X ,T )Ric(Y,Z)] (3.0.10)

W8(X ,Y )Z = R(X ,Y )Z +
1

n−1
[S(X ,Y )Z −S(Y,Z)X ] (3.0.11)
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where

S(X ,Y ) = g(QX ,Y ) = (n−1)g(X ,Y )
= R(X ,Y )

and Q is the Ricci Operator, i.e the linear endomorphism of tangent space at each of its
points or equivalently

W
′
(X ,Y,Z,U) =

′
R(X ,Y,Z,U)− 1

n−1
[R(X ,Y )g(Z,U)−R(Y,Z)g(X ,U)] (3.0.12)

W9(X ,Y,Z,T ) = R(X ,Y,Z,T )+
1

n−1
[g(Z,Y )Ric(X ,Y )−g(Y,Z)Ric(X ,T )] (3.0.13)
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4 STUDY OF W5-CURVATURE TENSOR IN
LP-SASAKIAN MANIFOLD

4.0.1 Introduction

In this section, we study the W5-curvature tensor on LP-Sasakian mnifold.The following
geometrical properties of W5 -Curvature tensor are being investigated; flatness,semi-
symmetric and symmetric on LP-Sasakian manifold.

4.0.2 Preliminaries

An n-dimensional real differentiable manifold Mn is said to be Lorentzian Para(LP) LP-
Sasakian manifold if it admits a (1,1)tensor field F,a C∞ 1-form A and a Lorentzian metric
g which satisfy [Mishra 1]

A(T ) =−1 (4.0.1)

X = X +A(X)T (4.0.2)

g(X ,Y ) = g(X ,Y )+A(X)A(Y ) (4.0.3)

g(X ,Y ) = A(X), DX T = X ,A(Y ) (4.0.4)

(DX F)(Y ) = g(X ,Y )+A(X)A(Y )T +X +A(X)A(Y ) (4.0.5)

where X = F(X) and DX denotes the covariant differentiation with respect to g,and X
and Y are any arbitrary vector fields on M.

In LP -Sasakian manifold Mn with structure (F,T,A,g) it can be seen that Pokhariyal[2]

T = 0 A(X = 0 (4.0.6)

rank(F) = n−1 (4.0.7)

If we put

F
′
(X ,Y ) = g(X ,Y ) (4.0.8)

then the tensor field F
′
(X ,Y ) is symmetric in X and Y, thus, we have F

′
(X ,Y ) = F

′
(Y,X)

In an n-dimensional LP-Sasakian manifold with the structure (F,T,A,g), we have

R
′
(X ,Y,Z,T ) = g(X ,T )g(Y,Z)−g(Y,T )g(X ,Z) (4.0.9)
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where g(X ,Z) is the metric tensor representing potential and
Ric(X ,Y ) = g(QX ,Y ) = (n−1)g(X ,Y ) is the Ricci tensor representing the matter tensor.
S(X ,Y ) = Ric(X ,Y ), S(T,T ) = R(T,T ) =−(n−1)

where R is the Riemannian (0,4) Curvature tensor,S=Ric(...) is the Ricci tensor.

4.0.3 W5-Curvature tensor in LP-Sasakian manifold.

Mishra and Pokhariyal[3] gave the definition of W5-Curvature tensor as

W5(X ,Y )Z = R(X ,Y )X + 1
n−1 [g(X ,Z)QY −S(X ,Z)Y ]

or

W
′
5(X ,Y,Z,T ) = R

′
(X ,Y,Z,T )+ [g(X ,Z)S(Y,T )−g(Y,T )S(X ,Z)]

Definition 4.3.1 A LP-Sasakian manifold Mn is said to be flat if the Riemannian Curvature
tensor vanishes identically i.e
R(X ,Y )Z = 0

Definition 4.3.2 A LP-Sasakian manifold Mn is said to be W5-flat if W5 -Curvature tensor
vanishes identically i.e
W5(X ,Y )Z = 0)

Theorem 4.3.3 A W5-flat LP-Sasakian manifold is a flat manifold.

Proof

If LP-Space is W5-flat then W5 =0 in

W
′
5(X ,Y,Z,T ) = R

′
(X ,Y,Z,T )+ 1

n−1 [g(X ,Z)S(Y,T )−g(Y,T )S(X ,Z)]

If LP-Space is W5-flat then we have

0 = R
′
(X ,Y,Z,T )+ 1

n−1 [g(X ,Z)S(Y,T )−g(Y,T )S(X ,Z)]

where S(X,Y)=g(QX,Y)=(n-1)g(X,Y)

we have

R
′
(X ,Y,Z,T ) = 1

n−1 [g(Y,T )S(X ,Z)−g(X ,Z)S(Y,T )]
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= 1
n−1 [g(Y,T )(n−1)g(X ,Z)−g(X ,Z)(n−1)g(Y,T )]

R
′
(X ,Y,Z,T ) = [g(Y,T )g(X ,Z)−g(X ,Z)g(Y,T )]

R
′
(X ,Y,Z,T ) = 0

Hence the theorem proved.

4.0.4 W5 -Semisymmetric LP-Sasakian Manifold.

U.C De and N.Guha [4] gave the definition of semisymmetric as R(X,Y)R(Z,U)V=0

Definition 4.4.1ALP-Sasakianmanifold is said to beW5 -Semisymmetric ifR(X ,Y )W5(Z,U)V =

0

Theorem 4.4.2 AW5 -Semisymmetric LP-Sasakian manifold is said to beW5-flat manifold

Proof
If LP-Space is a W5-Semisymmetric then

R(X ,Y )W5(Z,U)V = 0

⇒ g(R(X ,Y )W5(Z,U)V,T ) = R
′
(X ,Y,W5(Z,U)V,T )

= g(X ,T )g(Y,W5(Z,U)V )−g(Y,T )g(X ,W5(Z,U)V )

= A(X)g(Y,W5(Z,U)V )−A(Y )g(X ,W5(Z,U)V )

= A(X)W
′
5(Y,Z,U)V −A(Y )W

′
5(X ,Z,U)V = 0

But sinceA(X) ̸= 0 andA(Y ) ̸= 0 then it follows thatW
′
5(Y,Z,U)V = 0 andW

′
5(X ,Z,U)V =

0 hence the theorem proved.

4.0.5 W5 Symmetric LP-Sasakian Manifold

Chaki and Gupta (1963) gave the definition of a conformally symmetric manifold as

∇uC = 0 where C is conformal curvature tensor.

Definition 4.5.1 A LP-Sasakian manifold is said to be W5 -Symmetric if

∇uW5(X ,Y )Z =W
′
5(U,X ,Y )Z = 0

Theorem 4.5.2 A W5-Symmetric and W5-Semisymmetric LP-Sasakian manifold is a flat
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manifold.

Proof
From the previous theorem a W5-Semisymmetric LP-Sasakian manifold is a W5-flat mani-
fold and if LP-Sasakian space is W5-Symmetric this implies

∇uW5(X ,Y )Z =R(X ,Y,W5(Z,U,V ))−W5(R(X ,Y,Z),U,V )−W5(Z,R(X ,Y,U),V )−W5(Z,U,R(X ,Y,V ))=

0

Computing each of the above four terms and subject them to same conditions we have:

R(X ,Y,W5(Z,U,V )) = R
′
(X ,Y,W5(Z,U,V ),T )

R
′
(X ,Y,W5(Z,U,V ),T ) = g(X ,T )g(Y,W5(Z,U,V ))−g(Y,T )g(X ,W5(Z,U,V ))

A(X)W
′
5(Y,Z,U,V )−A(Y )W

′
5(X ,Z,U,V ) (4.0.10)

Again
W5(R(X ,Y,Z),U,V ) =W

′
5(R(X ,Y,Z),U,V,T )

W
′
5(R(X ,Y,Z),U,V,T )=R

′
(R(X ,Y,Z),U,V,T )+ 1

n−1 [g(R(X ,Y,Z),V )S(U,T )−g(U,T )S(R(X ,Y,Z),V )]

then using S(X,Y)=(n-1)g(X,Y) we get

W
′
5(R(X ,Y,Z),U,V,T )=R

′
(R(X ,Y,Z),U,V,T )+ n−1

n−1 [g(R(X ,Y,Z),V )g(U,T )−g(U,T )g(R(X ,Y,Z),V )]

W
′
5(R(X ,Y,Z),U,V,T ) = R

′
(R(X ,Y,Z),U,V,T )

R
′
(R(X ,Y,Z),U,V,T ) = g(U,V )g(R(X ,Y,Z),T )−g(R(X ,Y,Z),V )g(U,T )

= g(U,V )R
′
(X ,Y,Z,T )−A(U)R

′
(X ,Y,Z,V ) (4.0.11)

Also
W5(Z,R(X ,Y,U),V ) =W

′
5(Z,R(X ,Y,U),V,T )

W
′
5(Z,R(X ,Y,U),V,T )=R

′
(Z,R(X ,Y,U),V,T )+ 1

n−1 [g(Z,V )S(R(X ,Y,U),T )−g(R(X ,Y,U),T )S(Z,V )]

then using S(X,Y)=(n-1)g(X,Y)
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W
′
5(Z,R(X ,Y,U),V,T )=R

′
(Z,R(X ,Y,U),V,T )+ n−1

n−1 [g(Z,V )g(R(X ,Y,U),T )−g(R(X ,Y,U),T )g(Z,V )]

W
′
5(Z,R(X ,Y,U),V,T ) = R

′
(Z,R(X ,Y,U),V,T )

= g(R(Z,Y,U),V )g(Z,T )−g(Z,V )g(R(X ,Y,U),T )

= R
′
(X ,Y,U,V )A(Z)−g(Z,V )R

′
(X ,Y,U,T ) (4.0.12)

Also
W5(Z,U,R(X ,Y,V )) =W

′
5(Z,U,R(X ,Y,V ),T )

W
′
5(Z,U,R(X ,Y,V ),T )=R

′
(Z,U,R(X ,Y,V ),T )+ 1

n−1 [g(Z,R(X ,Y,V ))S(U,T )−g(U,T )g(Z,R(X ,Y,V )]

then using S(X,Y)=(n-1)g(X,Y)

W
′
5(Z,U,R(X ,Y,V ),T )=R

′
(Z,U,R(X ,Y,V ),T )+ n−1

n−1 [g(Z,R(X ,Y,V ))g(U,T )−g(U,T )g(Z,R(X ,Y,V ))]

W
′
5(Z,U,R(X ,Y,V ),T ) = R

′
(Z,U,R(X ,Y,V ),T )

R
′
(Z,U,R(X ,Y,V ),T ) = g(U,R(X ,Y,U))g(Z,T )−g(Z,R(X ,Y,V ))g(U,T )

R
′
(X ,Y,V,U)A(Z)−R

′
(X ,Y,V,Z)A(U) (4.0.13)

Next we put together equations (4.0.10),(4.0.11),(4.0.12) and (4.0.13)

A(X)W
′
5(Y,Z,U,V )−A(Y )W

′
5(X ,Z,U,V )−g(U,V )R

′
(X ,Y,Z,T )+A(U)R

′
(X ,Y,Z,V )−A(Z)R

′
(X ,Y,U,V )+

g(Z,V )R
′
(X ,Y,U,T )−R

′
(X ,Y,V,U)A(Z)+R

′
(X ,Y,V,Z)A(U)

Terms which are coeffeicients of A(Z) and A(U) cancel out since R
′
is skew-symmetric

with respect to the last terms
g(Z,V )R

′
(X ,Y,U,T )−g(U,V )R

′
(X ,Y,Z,T ) = 0

But since g(Z,V ) ̸= 0 and g(U,V ) ̸= 0 hence

R
′
(X ,Y,U,T ) = 0 and R

′
(X ,Y,Z,T ) = 0

Hence the theorem proved.

4.0.6 W5 Recurrent LP-Sasakian Manifold
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In this part, we study some the geometrical properties of W5 -Curvature tensor which is
recurrent on LP-Sasakian manifold M.

Definition 4.6.1 If we consider an LP-Sasakian manifold M which is W5 -Recurrent ,then
we have (Pokhariyal 1996)

∇UW5(X ,Y )Z = B(U)W5(X ,Y )Z (4.0.14)

where B is a non-zero 1 form and W5-Curvature tensor is given by

W5(X ,Y )Z = R(X ,Y )Z + 1
n−1 [g(X ,Z)Y −S(X ,Z)Y ]

W5(X ,Y )Z = g(Y,Z)X −g(X ,Z)Y + 1
n−1 [g(X ,Z)Y − (n−1)g(X ,Z)Y ]

= g(Y,Z)X −2g(X ,Z)Y + 1
n−1g(X ,Z)Y

= g(Y,Z)X − (2− 1
n−1

)g(X ,Z)Y (4.0.15)

= g(Y,Z)X − (2− 1
n−1)g(X ,Z)Y

g(W5(X ,Y )Z,T ) = g(g(Y,Z)X ,T )−g(2− 1
n−1)g(X ,Z)Y,T )

W
′
5(X ,Y,Z,T ) = g(Y,Z)g(X ,T )−g(X ,Z)g(Y,T )(2− 1

n−1)

W
′
5(X ,Y,Z,T ) = g(Y,Z)A(X)−g(X ,Z)A(Y )(2− 1

n−1)

Theorem 4.6.2 If a LP-Sasakian manifold is W5 -Recurrent and Ricci -recurrent ,then for
the same recurrence parameter its recurrent.

Proof

Given that

W
′
5(X ,Y,Z,T ) = R

′
(X ,Y,Z,T )+ 1

n−1 [g(X ,Z)S(Y,T )−g(Y,T )S(X ,Z)]

∇UW
′
5(X ,Y,Z,T ) = B(U)W

′
5(X ,Y,Z,T )

∇UW
′
5(X ,Y,Z,T ) = ∇U R

′
(X ,Y,Z,T )+ 1

n−1 [g(X ,Z)(∇U S)(Y,T )−g(Y,T )(∇U S)(X ,Z)]

But (∇U S)(Y,T ) = B(U)S(Y,T ) and (∇U S)(X ,Z) = B(U)S(X ,Z)

∇UW
′
5(X ,Y,Z,T )=∇U R

′
(X ,Y,Z,T )+ 1

n−1 [g(X ,Z)(B(U)S(Y,T )−g(Y,T )B(U)S(X ,Z)] =
B(U)W

′
5(X ,Y,Z,T )
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∇U R
′
(X ,Y,Z,T ) = B(U)[W

′
5(X ,Y,Z,T )− 1

n−1 [g(X ,Z)S(Y,T )−g(Y,T )S(X ,Z)]

∇U R
′
(X ,Y,Z,T ) = B(U)R

′
(X ,Y,Z,T )

Hence the theorem proved.

Theorem 4.6.3 A W5-Recurrent LP-Sasakian manifold with R(X ,Y )W5(Z,U)V = 0 and
A(X)g(Y,Z)− (2− 1

n−1)g(X ,Z)A(Y ) = 0 is a W5-Symmetric space.

Proof
From the definition 4.6.1, we have

∇UW5(X ,Y )Z = B(U)W5(X ,Y )Z

∇XW5(Z,U)V =R(X ,Y )W5(Z,U)V −W5(R(X ,Y )Z,U)V −W5(Z,R(X ,Y )U)V −W5(Z,U)R(X ,Y )V
(4.0.16)

But we are given R(X ,Y )W5(Z,U)V = 0 (semisymmetric space).
This implies that we are left to show that the relations is symmetric under stated condition.
Therefore (4.0.16) becomes

∇UW5(X ,Y )Z = B(U)W5(X ,Y )Z

=−W5(R(X ,Y )Z,U)V −W5(Z,R(X ,Y )U)V −W5(Z,U)R(X ,Y )V (4.0.17)

Hence expanding each term of (4.0.17) we get
W5(R(X ,Y )Z,U)V = g(U,V )R(X ,Y )Z − (2− 1

n−1)g(R(X ,Y )Z,V )U

= g(U,V )R(X ,Y )Z − (2− 1
n−1

)R
′
(X ,Y,Z,V )U (4.0.18)

Also

W5(Z,R(X ,Y )U)V = g(R(X ,Y )U,V )Z − (2− 1
n−1)g(Z,V )R(X ,Y )U

W5(Z,R(X ,Y )U)V = R
′
(X ,Y,U,V )Z − (2− 1

n−1
)g(Z,V )R(X ,Y )U (4.0.19)

Again
W5(Z,U)R(X ,Y )V = g(U,R(X ,Y )Z)− (2− 1

n−1)g(Z,R(X ,Y )V )U

W5(Z,U)R(X ,Y )V = R
′
(X ,Y,V,U)Z − (2− 1

n−1
)g(Z,R(X ,Y )V )U (4.0.20)
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Combining equation (4.0.18),(4.0.19) and (4.0.20) we have
∇UW5(X ,Y )Z = B(U)W5(X ,Y )Z

=−g(U,V )R(X ,Y )Z+(2− 1
n−1

)R
′
(X ,Y,Z,V )U−R

′
(X ,Y,U,V )Z+(2− 1

n−1
)g(Z,V )R(X ,Y )U−R

′
(X ,Y,V,U)Z+(2− 1

n−1
)R

′
(X ,Y,V,Z)U

(4.0.21)
Terms which are coefficients of U and Z cancel out since R

′
is skew -symmetric with

respect to the last two variables hence (4.0.21) becomes

(2− 1
n−1

)g(Z,V )R(X ,Y )U −g(U,V )R(X ,Y )Z (4.0.22)

Expanding (4.0.22) gives

g(∇XW5(Z,U)V,T ) = g(B(X)W5(Z,U)V,T )

= (2− 1
n−1

g(Z,V )[g(Y,U)X −g(X ,U)Y ]−g(U,V )[g(Y,Z)X −g(X ,Z)Y ] (4.0.23)

Taking inner product of (4.0.23) with respect to T both sides yields

g(∇XW5(Z,U)V,T ) = g(B(X)W5(Z,U)V,T )

= (2− 1
n−1

)g(Z,V )g(Y,U)g(X ,T )−g(X ,U)g(Y,T )−g(U,V )g(Y,Z)g(X ,T )−g(X ,Z)g(Y,T )
(4.0.24)

Relation (4.0.24) reduces

g(∇XW5(Z,U)V,T ) = g(B(X)W5(Z,U)V,T )

= (2− 1
n−1

)g(Z,V )g(Y,U)A(X)−g(X ,U)A(Y )−g(U,V )g(Y,Z)A(X)−g(X ,Z)A(Y )
(4.0.25)

The coefficients for g(Z,V)and g(U,V) from the initial given conditions given are both equal
to zero.Hence

(∇XW5(Z,U)V ) = g(B(X)W5(Z,U)V = 0 Hence the theorem proved.

4.1 Future Research

The aim of this project was to study W5 -Curvature tensor on LP-Sasakian manifold.
In future,we may wish to extend the work to Sasakian maniolds,In Para -Contact mani-
folds,In Para-Kemontsu manifolds and in almost -Kenmotsu manifold.
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